[tex]2 ^ { x } \cdot 2 ^ { 5

Berikut ini adalah pertanyaan dari btsa29654 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

2 ^ { x } \cdot 2 ^ { 5 } = 2 ^ { 4 }pangkat x nya berapa dan cara menghitungnya?

tolong dijawab yaa makasih ​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

 \mathbb{ \color{aqua}{ \underbrace{JAWABAN}}}

-1

------------------

 \mathbb{ \color{orange}{ \underbrace{PENYELESAIAN}}}

 \begin{aligned} &\begin{aligned}\small{\bf{Gunakan \: sifat \: sifat \: eksponen \: berikut : }} \end{aligned} \\ & \boxed{ \: \begin{aligned} \tt{ {a}^{m} \times {a}^{n} = {a}^{m + n} } \end{aligned} \: } \end{aligned} \\ \\

 \boxed{ \: \begin{aligned} \tt{2^{x} \cdot 2^{5}} &= \tt{ 2^{4}} \\ \tt{ { \not{2}}^{x + 5} }&= \tt{ { \not{2}}^{4} } \\ \tt{x + 5}&= \tt{4} \\ \tt{x}&= \tt{4 - 5} \\ \tt{x}&= \red{ \boxed{ \green{ \bf{ - 1}}}} \end{aligned} \: }

------------------

 \mathbb{ \color{red}{ \underbrace{KESIMPULAN}}}

Jadi, nilai x yang memenuhi adalah -1

 \colorbox{ff0000}{} \colorbox{ff4000}{}\colorbox{ff8000}{}\colorbox{ffc000}{}\colorbox{ffff00}{}\colorbox{c0ff00}{}\colorbox{80ff00}{}\colorbox{40ff00}{}\colorbox{00ff00}{}\colorbox{00ff40}{}\colorbox{00ff80}{}\colorbox{00ffc0}{}\colorbox{00ffff}{}\colorbox{00c0ff}{}\colorbox{0080ff}{}\colorbox{0040ff}{}\colorbox{0000ff}{}\colorbox{4000ff}{}\colorbox{8000ff}{}\colorbox{c000ff}{}\colorbox{ff00ff}{}\colorbox{ff00c0}{}\colorbox{ff00a0}{}\colorbox{ff0080}{}\colorbox{ff0040}{}

[tex] \mathbb{ \color{aqua}{ \underbrace{JAWABAN}}}[/tex]-1------------------[tex] \mathbb{ \color{orange}{ \underbrace{PENYELESAIAN}}}[/tex][tex] \begin{aligned} &\begin{aligned}\small{\bf{Gunakan \: sifat \: sifat \: eksponen \: berikut : }} \end{aligned} \\ & \boxed{ \: \begin{aligned} \tt{ {a}^{m} \times {a}^{n} = {a}^{m + n} } \end{aligned} \: } \end{aligned} \\ \\ [/tex][tex] \boxed{ \: \begin{aligned} \tt{2^{x} \cdot 2^{5}} &= \tt{ 2^{4}} \\ \tt{ { \not{2}}^{x + 5} }&= \tt{ { \not{2}}^{4} } \\ \tt{x + 5}&= \tt{4} \\ \tt{x}&= \tt{4 - 5} \\ \tt{x}&= \red{ \boxed{ \green{ \bf{ - 1}}}} \end{aligned} \: }[/tex]------------------[tex] \mathbb{ \color{red}{ \underbrace{KESIMPULAN}}}[/tex]Jadi, nilai x yang memenuhi adalah -1[tex] \colorbox{ff0000}{} \colorbox{ff4000}{}\colorbox{ff8000}{}\colorbox{ffc000}{}\colorbox{ffff00}{}\colorbox{c0ff00}{}\colorbox{80ff00}{}\colorbox{40ff00}{}\colorbox{00ff00}{}\colorbox{00ff40}{}\colorbox{00ff80}{}\colorbox{00ffc0}{}\colorbox{00ffff}{}\colorbox{00c0ff}{}\colorbox{0080ff}{}\colorbox{0040ff}{}\colorbox{0000ff}{}\colorbox{4000ff}{}\colorbox{8000ff}{}\colorbox{c000ff}{}\colorbox{ff00ff}{}\colorbox{ff00c0}{}\colorbox{ff00a0}{}\colorbox{ff0080}{}\colorbox{ff0040}{} [/tex][tex] \mathbb{ \color{aqua}{ \underbrace{JAWABAN}}}[/tex]-1------------------[tex] \mathbb{ \color{orange}{ \underbrace{PENYELESAIAN}}}[/tex][tex] \begin{aligned} &\begin{aligned}\small{\bf{Gunakan \: sifat \: sifat \: eksponen \: berikut : }} \end{aligned} \\ & \boxed{ \: \begin{aligned} \tt{ {a}^{m} \times {a}^{n} = {a}^{m + n} } \end{aligned} \: } \end{aligned} \\ \\ [/tex][tex] \boxed{ \: \begin{aligned} \tt{2^{x} \cdot 2^{5}} &= \tt{ 2^{4}} \\ \tt{ { \not{2}}^{x + 5} }&= \tt{ { \not{2}}^{4} } \\ \tt{x + 5}&= \tt{4} \\ \tt{x}&= \tt{4 - 5} \\ \tt{x}&= \red{ \boxed{ \green{ \bf{ - 1}}}} \end{aligned} \: }[/tex]------------------[tex] \mathbb{ \color{red}{ \underbrace{KESIMPULAN}}}[/tex]Jadi, nilai x yang memenuhi adalah -1[tex] \colorbox{ff0000}{} \colorbox{ff4000}{}\colorbox{ff8000}{}\colorbox{ffc000}{}\colorbox{ffff00}{}\colorbox{c0ff00}{}\colorbox{80ff00}{}\colorbox{40ff00}{}\colorbox{00ff00}{}\colorbox{00ff40}{}\colorbox{00ff80}{}\colorbox{00ffc0}{}\colorbox{00ffff}{}\colorbox{00c0ff}{}\colorbox{0080ff}{}\colorbox{0040ff}{}\colorbox{0000ff}{}\colorbox{4000ff}{}\colorbox{8000ff}{}\colorbox{c000ff}{}\colorbox{ff00ff}{}\colorbox{ff00c0}{}\colorbox{ff00a0}{}\colorbox{ff0080}{}\colorbox{ff0040}{} [/tex][tex] \mathbb{ \color{aqua}{ \underbrace{JAWABAN}}}[/tex]-1------------------[tex] \mathbb{ \color{orange}{ \underbrace{PENYELESAIAN}}}[/tex][tex] \begin{aligned} &\begin{aligned}\small{\bf{Gunakan \: sifat \: sifat \: eksponen \: berikut : }} \end{aligned} \\ & \boxed{ \: \begin{aligned} \tt{ {a}^{m} \times {a}^{n} = {a}^{m + n} } \end{aligned} \: } \end{aligned} \\ \\ [/tex][tex] \boxed{ \: \begin{aligned} \tt{2^{x} \cdot 2^{5}} &= \tt{ 2^{4}} \\ \tt{ { \not{2}}^{x + 5} }&= \tt{ { \not{2}}^{4} } \\ \tt{x + 5}&= \tt{4} \\ \tt{x}&= \tt{4 - 5} \\ \tt{x}&= \red{ \boxed{ \green{ \bf{ - 1}}}} \end{aligned} \: }[/tex]------------------[tex] \mathbb{ \color{red}{ \underbrace{KESIMPULAN}}}[/tex]Jadi, nilai x yang memenuhi adalah -1[tex] \colorbox{ff0000}{} \colorbox{ff4000}{}\colorbox{ff8000}{}\colorbox{ffc000}{}\colorbox{ffff00}{}\colorbox{c0ff00}{}\colorbox{80ff00}{}\colorbox{40ff00}{}\colorbox{00ff00}{}\colorbox{00ff40}{}\colorbox{00ff80}{}\colorbox{00ffc0}{}\colorbox{00ffff}{}\colorbox{00c0ff}{}\colorbox{0080ff}{}\colorbox{0040ff}{}\colorbox{0000ff}{}\colorbox{4000ff}{}\colorbox{8000ff}{}\colorbox{c000ff}{}\colorbox{ff00ff}{}\colorbox{ff00c0}{}\colorbox{ff00a0}{}\colorbox{ff0080}{}\colorbox{ff0040}{} [/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh 3A01 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Wed, 16 Nov 22