Jumlah suku ke-3 dan ke-5 dari suatu deret aritmatika adalah

Berikut ini adalah pertanyaan dari zakiatun4001 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Jumlah suku ke-3 dan ke-5 dari suatu deret aritmatika adalah –20 sedangkan suku ke-8 adalah 14. jika suku ke-n adalah 38, jumlah deret aritmatika tersebut adalah….?

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawab:

Penjelasan dengan langkah-langkah:

U3 + U5 = -20

U8 = 14

Un = 38

Sn = ...?

Un = a + (n - 1)b

Sn = (n/2) (2a + (n - 1)b)

U3 = a + (3 - 1)b = a + 2b

U5 = a + (5 - 1)b = a + 4b

U8 = a + (8 - 1)b = a + 7b

a + 2b + a + 4b = -20

2a + 6b = -20

½ (2a + 6b) = ½ (-20)

a + 3b = -10

a + 3b = -10

a + 7b = 14 _

-4b = -24

b = -24/(-4) = 6

a = -10 - 3b

a = -10 - 3(6)

a = -10 - 18

a = -28

Un = a + (n - 1)b

38 = -28 + (n - 1)6

38 + 28 = 6n - 6

38 + 28 + 6 = 6n

72 = 6n

n = 72/6

n = 12

Sn = (n/2) (2a + (n - 1)b)

S12 = (12/2) (2(-28) + (12 - 1)6)

S12 = 6 (-56 + 66)

S12 = 6 (10)

S12 = 60

Jadi, jumlah deret aritmatika tersebut adalah 60.

Semoga dengan pertanyaan yang sudah terjawab oleh arnymatematika dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 04 Jul 23