Matematika bab vektor kelas 10​

Berikut ini adalah pertanyaan dari shafnahusna522 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Matematika bab vektor kelas 10​
Matematika bab vektor kelas 10​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jika nilai |\vec{u}| = 6, |\vec{v}| = 4√2, dan |\vec{u}-\vec{v}| = 8, nilai |\vec{u}+\vec{v}|adalah6√2.

Penjelasan

Panjang/Besar Vektor

Cara 1: Menggunakan Besar/Panjang Vektor

Asumsikan kedua vektor berada di \rm R^2.

|\vec{u}| = 6, maka:

\begin{aligned}&\sqrt{{u_1}^2+{u_2}^2}=6\\&\Leftrightarrow{u_1}^2+{u_2}^2=36\quad...(i)\end{aligned}

|\vec{v}| = 4\sqrt{2}, maka

\begin{aligned}&\sqrt{{v_1}^2+{v_2}^2}=4\sqrt{2}\\&\Leftrightarrow{v_1}^2+{v_2}^2=32\quad...(ii)\end{aligned}

|\vec{u}-\vec{v}|=8, maka:

\begin{aligned}&\sqrt{\left(u_1-v_1\right)^2+\left(u_2-v_2\right)^2}=8\\&{\Leftrightarrow\ }\left(u_1-v_1\right)^2+\left(u_2-v_2\right)^2=64\\&{\Leftrightarrow\ }{u_1}^2-2u_1v_1+{v_1}^2+{u_2}^2-2u_2v_2+{v_2}^2=64\\&{\Leftrightarrow\ }\left({u_1}^2+{u_2}^2\right)+\left({v_1}^2+{v_2}^2\right)-2\left(u_1v_1+u_2v_2\right)=64\\&\textsf{Substitusi dari }(i)\ \textsf{dan}\ (ii).\\&{\Leftrightarrow\ }36+32-2\left(u_1v_1+u_2v_2\right)=64\end{aligned}
\begin{aligned}&{\Leftrightarrow\ }68-2\left(u_1v_1+u_2v_2\right)=64\\&{\Leftrightarrow\ }2\left(u_1v_1+u_2v_2\right)=4\quad...(iii)\end{aligned}

Nilai yang kita cari:

\begin{aligned}|\vec{u}+\vec{v}|&=\sqrt{\left(u_1+v_1\right)^2+\left(u_2+v_2\right)^2}\\&=\sqrt{{u_1}^2+2u_1v_1+{v_1}^2+{u_2}^2+2u_2v_2+{v_2}^2}\\&=\sqrt{\left({u_1}^2+{u_2}^2\right)+\left({v_1}^2+{v_2}^2\right)+2\left(u_1v_1+u_2v_2\right)}\\&\quad\textsf{Substitusi dari }(i),(ii),\ \textsf{dan}\ (iii).\\&=\sqrt{36+32+2\cdot4}\\&=\sqrt{72}\\|\vec{u}+\vec{v}|&=\boxed{\,\bf6\sqrt{2}\,}\end{aligned}

Atau dengan cara seperti berikut ini..
Ingat bahwa (a + b)² = (a – b)² + 4ab.

\begin{aligned}|\vec{u}+\vec{v}|&=\sqrt{\left(u_1+v_1\right)^2+\left(u_2+v_2\right)^2}\\&=\sqrt{\left(u_1-v_1\right)^2+\left(u_2-v_2\right)^2+4\left(u_1v_1+u_2v_2\right)}\\&=\sqrt{|\vec{u}-\vec{v}|^2+2\cdot2\left(u_1v_1+u_2v_2\right)}\\&\quad\textsf{Substitusi dari }(iii)\ \textsf{dan nilai }|\vec{u}-\vec{v}|.\\&=\sqrt{8^2+2\cdot4}\\&=\sqrt{72}\\|\vec{u}+\vec{v}|&=\boxed{\,\bf6\sqrt{2}\,}\end{aligned}

Cara 2: Menggunakan Perkalian Dot

Dari perkalian dot antara dua vektor, dapat kita peroleh rumus:

\begin{aligned}\bullet\ &|\vec{u}+\vec{v}|^2=|\vec{u}|^2+|\vec{v}|^2+2\left(\vec{u}\cdot\vec{v}\right)\\\bullet\ &|\vec{u}-\vec{v}|^2=|\vec{u}|^2+|\vec{v}|^2-2\left(\vec{u}\cdot\vec{v}\right)\end{aligned}

Maka:

\begin{aligned}8^2&=|\vec{u}-\vec{v}|^2\\64&=|\vec{u}|^2+|\vec{v}|^2-2\left(\vec{u}\cdot\vec{v}\right)\\&=6^2+\left(4\sqrt{2}\right)^2-2\left(\vec{u}\cdot\vec{v}\right)\\&=36+32-2\left(\vec{u}\cdot\vec{v}\right)\\&=68-2\left(\vec{u}\cdot\vec{v}\right)\\2\left(\vec{u}\cdot\vec{v}\right)&=4\end{aligned}

Sehingga:

\begin{aligned}|\vec{u}+\vec{v}|^2&=|\vec{u}|^2+|\vec{v}|^2+2\left(\vec{u}\cdot\vec{v}\right)\\&=|\vec{u}-\vec{v}|^2+4\left(\vec{u}\cdot\vec{v}\right)\\&=8^2+4\cdot2\\&=72\\|\vec{u}+\vec{v}|&=\sqrt{72}=\boxed{\,\bf6\sqrt{2}\,}\end{aligned}


\overline{\begin{array}{l}\small\textsf{Duc In Altum}\\\small\text{bertolaklah\;ke\;tempat}\\\small\text{yang\;lebih\;dalam}\end{array}}

Semoga dengan pertanyaan yang sudah terjawab oleh DucInAltum dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Wed, 17 May 23