Bek bek bek Brpkh sin(30°) × cos(60°)

Berikut ini adalah pertanyaan dari Xanella pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Bek bek bek

Brpkh sin(30°) × cos(60°)

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Hasil dari sin(30°) × cos(60°) adalah \bf{\frac{1}{4}}

 \:

Trigonometri

Pendahuluan

A.) Definisi

.) Perbandingan Trigonometri

Pada segitiga siku-siku ABC, berlaku :

*Gambar ke-1

\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}}

\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}}

\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}}

\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}

\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}

\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}

B.) Sudut dan Kuadran

1.) Pembagian Daerah

\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}

2.) Tanda-tanda Fungsi

\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}

3.) Sudut-sudut Istimewa

\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}}  \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}}

4.) Sudut Berelasi

a.   Kalau kita gunakan (90°± ...) atau (270°± ...)

    1.) Fungsi berubah

\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}

    2.)  Tanda +/- mengikuti kuadran

b.   kalau kita gunakan (180°± ...) atau (360°− ...)

    1.) Fungsi tetap

\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}

C.) Dalil Segitiga

1.) Aturan Sinus

*gambar ke-2

\small\mathbf{\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}}

2.) Aturan Cosinus

a. a² = b² + c² - 2bc cos A atau

\small\mathbf{cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}}

b. b² = a² + c² - 2ac cos B atau

\small\mathbf{cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}}

c. c² = a² + b² - 2ab cos C atau

\small\mathbf{cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}}

 \:

 \:

Pembahasan

Diketahui :

sin(30°) × cos(60°)

Ditanya :

Berapakah hasil tersebut?

Jawaban :

\bf{\sin\left(30^\circ\right)\times\cos\left(60^\circ\right)}

\bf{=\frac{1}{2}\times\frac{1}{.2}}

\boxed{\bf{=\frac{1}{4}}}

 \:

 \:

Pelajari Lebih Lanjut :

 \:

 \:

Detail Jawaban :

Grade : SMA

Kode Kategorisasi : 10.2.6

Kelas : 10

Kode Mapel : 2

Pelajaran : Matematika

Bab : 6

Sub Bab : Bab 6 – Trigonometri Dasar

 \:

Kata Kunci : Trigonometri, sin 30, cos 60.

Hasil dari sin(30°) × cos(60°) adalah [tex]\bf{\frac{1}{4}}[/tex][tex] \: [/tex]TrigonometriPendahuluanA.) Definisi.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex]4.) Sudut Berelasia.   Kalau kita gunakan (90°± ...) atau (270°± ...)     1.) Fungsi berubah [tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}[/tex]     2.)  Tanda +/- mengikuti kuadranb.   kalau kita gunakan (180°± ...) atau (360°− ...)     1.) Fungsi tetap[tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}[/tex]C.) Dalil Segitiga1.) Aturan Sinus*gambar ke-2[tex]\small\mathbf{\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}}[/tex]2.) Aturan Cosinusa. a² = b² + c² - 2bc cos A atau	[tex]\small\mathbf{cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}}[/tex]b. b² = a² + c² - 2ac cos B atau	[tex]\small\mathbf{cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}}[/tex]c. c² = a² + b² - 2ab cos C atau	[tex]\small\mathbf{cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}}[/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :sin(30°) × cos(60°)Ditanya :Berapakah hasil tersebut?Jawaban :[tex]\bf{\sin\left(30^\circ\right)\times\cos\left(60^\circ\right)}[/tex][tex]\bf{=\frac{1}{2}\times\frac{1}{.2}}[/tex][tex]\boxed{\bf{=\frac{1}{4}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Contoh soal dan penyelesaian trigonometri : https://brainly.co.id/tugas/14823036Contoh soal yang serupa 1 : https://brainly.co.id/tugas/9349166Contoh soal yang serupa 2 : https://brainly.co.id/tugas/14975792Mencari cos a jika diketahui sin a : https://brainly.co.id/tugas/14652547[tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri Dasar[tex] \: [/tex]Kata Kunci : Trigonometri, sin 30, cos 60.Hasil dari sin(30°) × cos(60°) adalah [tex]\bf{\frac{1}{4}}[/tex][tex] \: [/tex]TrigonometriPendahuluanA.) Definisi.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex]4.) Sudut Berelasia.   Kalau kita gunakan (90°± ...) atau (270°± ...)     1.) Fungsi berubah [tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}[/tex]     2.)  Tanda +/- mengikuti kuadranb.   kalau kita gunakan (180°± ...) atau (360°− ...)     1.) Fungsi tetap[tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}[/tex]C.) Dalil Segitiga1.) Aturan Sinus*gambar ke-2[tex]\small\mathbf{\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}}[/tex]2.) Aturan Cosinusa. a² = b² + c² - 2bc cos A atau	[tex]\small\mathbf{cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}}[/tex]b. b² = a² + c² - 2ac cos B atau	[tex]\small\mathbf{cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}}[/tex]c. c² = a² + b² - 2ab cos C atau	[tex]\small\mathbf{cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}}[/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :sin(30°) × cos(60°)Ditanya :Berapakah hasil tersebut?Jawaban :[tex]\bf{\sin\left(30^\circ\right)\times\cos\left(60^\circ\right)}[/tex][tex]\bf{=\frac{1}{2}\times\frac{1}{.2}}[/tex][tex]\boxed{\bf{=\frac{1}{4}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Contoh soal dan penyelesaian trigonometri : https://brainly.co.id/tugas/14823036Contoh soal yang serupa 1 : https://brainly.co.id/tugas/9349166Contoh soal yang serupa 2 : https://brainly.co.id/tugas/14975792Mencari cos a jika diketahui sin a : https://brainly.co.id/tugas/14652547[tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri Dasar[tex] \: [/tex]Kata Kunci : Trigonometri, sin 30, cos 60.Hasil dari sin(30°) × cos(60°) adalah [tex]\bf{\frac{1}{4}}[/tex][tex] \: [/tex]TrigonometriPendahuluanA.) Definisi.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex]4.) Sudut Berelasia.   Kalau kita gunakan (90°± ...) atau (270°± ...)     1.) Fungsi berubah [tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}[/tex]     2.)  Tanda +/- mengikuti kuadranb.   kalau kita gunakan (180°± ...) atau (360°− ...)     1.) Fungsi tetap[tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}[/tex]C.) Dalil Segitiga1.) Aturan Sinus*gambar ke-2[tex]\small\mathbf{\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}}[/tex]2.) Aturan Cosinusa. a² = b² + c² - 2bc cos A atau	[tex]\small\mathbf{cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}}[/tex]b. b² = a² + c² - 2ac cos B atau	[tex]\small\mathbf{cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}}[/tex]c. c² = a² + b² - 2ab cos C atau	[tex]\small\mathbf{cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}}[/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :sin(30°) × cos(60°)Ditanya :Berapakah hasil tersebut?Jawaban :[tex]\bf{\sin\left(30^\circ\right)\times\cos\left(60^\circ\right)}[/tex][tex]\bf{=\frac{1}{2}\times\frac{1}{.2}}[/tex][tex]\boxed{\bf{=\frac{1}{4}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Contoh soal dan penyelesaian trigonometri : https://brainly.co.id/tugas/14823036Contoh soal yang serupa 1 : https://brainly.co.id/tugas/9349166Contoh soal yang serupa 2 : https://brainly.co.id/tugas/14975792Mencari cos a jika diketahui sin a : https://brainly.co.id/tugas/14652547[tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri Dasar[tex] \: [/tex]Kata Kunci : Trigonometri, sin 30, cos 60.Hasil dari sin(30°) × cos(60°) adalah [tex]\bf{\frac{1}{4}}[/tex][tex] \: [/tex]TrigonometriPendahuluanA.) Definisi.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex]4.) Sudut Berelasia.   Kalau kita gunakan (90°± ...) atau (270°± ...)     1.) Fungsi berubah [tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}[/tex]     2.)  Tanda +/- mengikuti kuadranb.   kalau kita gunakan (180°± ...) atau (360°− ...)     1.) Fungsi tetap[tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}[/tex]C.) Dalil Segitiga1.) Aturan Sinus*gambar ke-2[tex]\small\mathbf{\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}}[/tex]2.) Aturan Cosinusa. a² = b² + c² - 2bc cos A atau	[tex]\small\mathbf{cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}}[/tex]b. b² = a² + c² - 2ac cos B atau	[tex]\small\mathbf{cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}}[/tex]c. c² = a² + b² - 2ab cos C atau	[tex]\small\mathbf{cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}}[/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :sin(30°) × cos(60°)Ditanya :Berapakah hasil tersebut?Jawaban :[tex]\bf{\sin\left(30^\circ\right)\times\cos\left(60^\circ\right)}[/tex][tex]\bf{=\frac{1}{2}\times\frac{1}{.2}}[/tex][tex]\boxed{\bf{=\frac{1}{4}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Contoh soal dan penyelesaian trigonometri : https://brainly.co.id/tugas/14823036Contoh soal yang serupa 1 : https://brainly.co.id/tugas/9349166Contoh soal yang serupa 2 : https://brainly.co.id/tugas/14975792Mencari cos a jika diketahui sin a : https://brainly.co.id/tugas/14652547[tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri Dasar[tex] \: [/tex]Kata Kunci : Trigonometri, sin 30, cos 60.

Semoga dengan pertanyaan yang sudah terjawab oleh Sinogen dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 26 Dec 22