2,4,8,14,......... tentukan 2 suku berikutnya​

Berikut ini adalah pertanyaan dari nyomansunarti55 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

2,4,8,14,.........
tentukan 2 suku berikutnya​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

 \mathbb{ \color{aqua}{ \underbrace{JAWABAN}}}

2, 4, 8, 14, 22, 32

------------------

 \mathbb{ \color{orange}{ \underbrace{PENYELESAIAN}}}

 \small \boxed{ \begin{array}{c|c} \color{violet} \bf Rumus& \color{violet} \bf Keterangan \\ \hline & \tt{\color{red} U} {\color{lightgreen}_n} = suku \: ke - n ~~~~~~~~~~~\\ & \tt {\color{lightgreen}n} = banyak \: suku~~~~~~~~ \\ \boxed{ \: \color{orange} \tt {\color{red} U}{\color{lightgreen}_n} = {\color{magenta}a} + { \color{gold}b} ( {\color{lightgreen}n} - 1) + \small{ \frac{{ \color{aqua}c}({\color{lightgreen}n} - 1)({\color{lightgreen}n} - 2)}{2} } \: } &\tt {\color{magenta}a} = suku \: pertama~~~~~~ \\ & \tt { \color{gold}b} = beda \: (U_{2} - U_{1}) ~~~~~\\ & \tt {\color{aqua}c} = beda \: (tingkat \: 1) \end{array} } \\ \\

 \boxed{ \: \begin{aligned} &\tt {\bf2} \: \: \: 4 \: \: \: 8 \: \: \: 14 \: \: \: ... \begin{aligned} &\Rightarrow& \bf a = 2\end{aligned} \\ &\tt \: \: \: {\bf 2} \: \: \: 4 \: \: \: 6 \: \: \: ... \: \: \: \: \begin{aligned} &\Rightarrow& \bf b = 2\end{aligned} \\ & \: \: \: \: \: \: \tt{ \bf2} \: \: \: 2 \: \: \: ... \: \: \: \: \: \: \begin{aligned} &\Rightarrow& \bf \: c = 2\end{aligned} \end{aligned} \: } \\\\

  • rumus suku ke-n :

 \begin{aligned}& \implies& \boxed{ \: \begin{aligned} \tt U_n &= \tt a + b(n - 1) + \small{ \frac{c(n - 1)(n - 2)}{2}} \\ \tt U_n &= \tt 2 + 2(n - 1) + \small{ \frac{ \not2(n - 1)(n - 2)}{ \not2} } \\ \tt U_n &= \tt 2 + 2(n - 1) + (n - 1)(n - 2) \\ \tt U_n &= \tt 2 + 2n - 2 + {n}^{2} - 2n - n + 2 \\ \tt U_n &= \bf{ \red{ {n}^{2} - n + 2}} \end{aligned} \: }\end{aligned} \\ \\

  • 2 suku berikutnya :

 \begin{aligned}& \implies& \boxed{ \: \begin{aligned} \tt U_{n} &= \tt {n}^{2} - n + 2 \\ \tt U_{5} &= \tt {5}^{2} - 5 + 2 \\ \tt U_{5} &= \tt 25 - 5 + 2 \\ \tt U_{5} &= \tt 20 + 2 \\ \tt U_{5} &= \bf{ \red{22}} \\ \\ \tt U_{n} &= \tt {n}^{2} - n + 2 \\ \tt U_{6} &= \tt {6}^{2} - 6 + 2 \\ \tt U_{6} &= \tt 36 - 6 + 2 \\ \tt U_{6} &= \tt 30 + 2 \\ \tt U_{6} &= \bf{ \red{32}} \end{aligned} \: }\end{aligned}

------------------

 \mathbb{ \color{red}{ \underbrace{KESIMPULAN}}}

Jadi, 2 suku berikutnya adalah 22 dan 32

 \colorbox{ff0000}{} \colorbox{ff4000}{}\colorbox{ff8000}{}\colorbox{ffc000}{}\colorbox{ffff00}{}\colorbox{c0ff00}{}\colorbox{80ff00}{}\colorbox{40ff00}{}\colorbox{00ff00}{}\colorbox{00ff40}{}\colorbox{00ff80}{}\colorbox{00ffc0}{}\colorbox{00ffff}{}\colorbox{00c0ff}{}\colorbox{0080ff}{}\colorbox{0040ff}{}\colorbox{0000ff}{}\colorbox{4000ff}{}\colorbox{8000ff}{}\colorbox{c000ff}{}\colorbox{ff00ff}{}\colorbox{ff00c0}{}\colorbox{ff00a0}{}\colorbox{ff0080}{}\colorbox{ff0040}{}

[tex] \mathbb{ \color{aqua}{ \underbrace{JAWABAN}}}[/tex]2, 4, 8, 14, 22, 32------------------[tex] \mathbb{ \color{orange}{ \underbrace{PENYELESAIAN}}}[/tex][tex] \small \boxed{ \begin{array}{c|c} \color{violet} \bf Rumus& \color{violet} \bf Keterangan \\ \hline & \tt{\color{red} U} {\color{lightgreen}_n} = suku \: ke - n ~~~~~~~~~~~\\ & \tt {\color{lightgreen}n} = banyak \: suku~~~~~~~~ \\ \boxed{ \: \color{orange} \tt {\color{red} U}{\color{lightgreen}_n} = {\color{magenta}a} + { \color{gold}b} ( {\color{lightgreen}n} - 1) + \small{ \frac{{ \color{aqua}c}({\color{lightgreen}n} - 1)({\color{lightgreen}n} - 2)}{2} } \: } &\tt {\color{magenta}a} = suku \: pertama~~~~~~ \\ & \tt { \color{gold}b} = beda \: (U_{2} - U_{1}) ~~~~~\\ & \tt {\color{aqua}c} = beda \: (tingkat \: 1) \end{array} } \\ \\[/tex][tex] \boxed{ \: \begin{aligned} &\tt {\bf2} \: \: \: 4 \: \: \: 8 \: \: \: 14 \: \: \: ... \begin{aligned} &\Rightarrow& \bf a = 2\end{aligned} \\ &\tt \: \: \: {\bf 2} \: \: \: 4 \: \: \: 6 \: \: \: ... \: \: \: \: \begin{aligned} &\Rightarrow& \bf b = 2\end{aligned} \\ & \: \: \: \: \: \: \tt{ \bf2} \: \: \: 2 \: \: \: ... \: \: \: \: \: \: \begin{aligned} &\Rightarrow& \bf \: c = 2\end{aligned} \end{aligned} \: } \\\\[/tex]rumus suku ke-n : [tex] \begin{aligned}& \implies& \boxed{ \: \begin{aligned} \tt U_n &= \tt a + b(n - 1) + \small{ \frac{c(n - 1)(n - 2)}{2}} \\ \tt U_n &= \tt 2 + 2(n - 1) + \small{ \frac{ \not2(n - 1)(n - 2)}{ \not2} } \\ \tt U_n &= \tt 2 + 2(n - 1) + (n - 1)(n - 2) \\ \tt U_n &= \tt 2 + 2n - 2 + {n}^{2} - 2n - n + 2 \\ \tt U_n &= \bf{ \red{ {n}^{2} - n + 2}} \end{aligned} \: }\end{aligned} \\ \\[/tex]2 suku berikutnya : [tex] \begin{aligned}& \implies& \boxed{ \: \begin{aligned} \tt U_{n} &= \tt {n}^{2} - n + 2 \\ \tt U_{5} &= \tt {5}^{2} - 5 + 2 \\ \tt U_{5} &= \tt 25 - 5 + 2 \\ \tt U_{5} &= \tt 20 + 2 \\ \tt U_{5} &= \bf{ \red{22}} \\ \\ \tt U_{n} &= \tt {n}^{2} - n + 2 \\ \tt U_{6} &= \tt {6}^{2} - 6 + 2 \\ \tt U_{6} &= \tt 36 - 6 + 2 \\ \tt U_{6} &= \tt 30 + 2 \\ \tt U_{6} &= \bf{ \red{32}} \end{aligned} \: }\end{aligned} [/tex]------------------[tex] \mathbb{ \color{red}{ \underbrace{KESIMPULAN}}}[/tex]Jadi, 2 suku berikutnya adalah 22 dan 32[tex] \colorbox{ff0000}{} \colorbox{ff4000}{}\colorbox{ff8000}{}\colorbox{ffc000}{}\colorbox{ffff00}{}\colorbox{c0ff00}{}\colorbox{80ff00}{}\colorbox{40ff00}{}\colorbox{00ff00}{}\colorbox{00ff40}{}\colorbox{00ff80}{}\colorbox{00ffc0}{}\colorbox{00ffff}{}\colorbox{00c0ff}{}\colorbox{0080ff}{}\colorbox{0040ff}{}\colorbox{0000ff}{}\colorbox{4000ff}{}\colorbox{8000ff}{}\colorbox{c000ff}{}\colorbox{ff00ff}{}\colorbox{ff00c0}{}\colorbox{ff00a0}{}\colorbox{ff0080}{}\colorbox{ff0040}{} [/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh 3A01 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sun, 06 Nov 22