Sederhanakan pecahan aljabar berikut. A.9t pangkat 2-25 per 6t pangkat 3+10t B.3x

Berikut ini adalah pertanyaan dari wwarni117 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Sederhanakan pecahan aljabar berikut.A.9t pangkat 2-25 per 6t pangkat 3+10t
B.3x pangkat 2+10x-8 per 9x-6
C.p pangkat 2 +3p-28 per p pangkat 2-16
D.x pangkat 2+ x-6 per 3x pangkat 2-2x-8

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Menyederhanakan pecahan aljabar

A. (9t² - 25)/(6t² + 10t) = (3t - 5)/2t

B. (3x² + 10x - 8)/(9x - 6) = x - 4/3

C. (p² + 3p - 28)/(p² - 16) = (p + 7)/(p + 4)

D. (x² + x - 6)/(3x² - 2x - 8) = (x + 3)/(3x + 4)

Nilai tersebut diperoleh dari memfaktorkan bentuk aljabar pada pembilang dan penyebut pecahan. Simak pembahasan berikut.

Pembahasan

Menyederhanakan pecahan aljabar

Untuk menyederhanakan pecahan, maka difaktorkan terlebih dahulu pembilang dan penyebut pada pecahan aljabar berikut.

A. (9t² - 25)/(6t³ + 10t)

Note: ralat soal agar diperoleh bentuk yang lebih sederhana

(9t² - 25)/(6t² + 10t)

jawab:

  • Faktor pembilang

ingat! a² - b² = (a + b)(a - b)

9t² - 25 = 3²t² - 5²

9t² - 25 = (3t - 5)(3t - 5)

  • Faktor penyebut

(6t² + 10t) = 2t (3t + 5)

Maka diperoleh pecahan aljabar sebagai berikut:

(9t² - 25)/(6t² + 10t) = (3t - 5)(3t - 5)/2t (3t + 5)

(9t² - 25)/(6t² + 10t) = (3t - 5)/2t

Jadi bentuk sederhana dari (9t² - 25)/(6t² + 10t) adalah (3t - 5)/2t

B. (3x² + 10x - 8)/(9x - 6)

jawab:

  • Faktor pembilang

3x² + 10x - 8 = (3x - 6)(3x - 4)/3

3x² + 10x - 8 = (x - 2)(3x - 4)

  • Faktor penyebut

9x - 6 = 3(x - 2)

Maka diperoleh pecahan aljabar sebagai berikut:

(3x² + 10x - 8)/(9x - 6) = (x - 2)(3x - 4)/3(x - 2)

(3x² + 10x - 8)/(9x - 6) = (3x - 4)/3

(3x² + 10x - 8)/(9x - 6) = 1/3 (3x - 4)

(3x² + 10x - 8)/(9x - 6) = 1/3 × 3x - 1/3 × 4

(3x² + 10x - 8)/(9x - 6) = x - 4/3

Jadi bentuk sederhana dari (3x² + 10x - 8)/(9x - 6) adalah x - 4/3

C. (p² + 3p - 28)/(p² - 16)

jawab:

  • Faktor pembilang

p² + 3p - 28 = (p - 4)(p + 7)

  • Faktor penyebut

ingat! a² - b² = (a + b)(a - b)

p² - 16 = p² - 4²

p² - 16 = (p - 4)(p + 4)

Maka diperoleh pecahan aljabar sebagai berikut:

(p² + 3p - 28)/(p² - 16) = (p - 4)(p + 7)/(p - 4)(p + 4)

(p² + 3p - 28)/(p² - 16) = (p + 7)/(p + 4)

Jadi bentuk sederhana dari (p² + 3p - 28)/(p² - 16) adalah (p + 7)/(p + 4)

D. (x² + x - 6)/(3x² - 2x - 8)

jawab:

  • Faktor pembilang

x² + x - 6 = (x - 2)(x + 3)

  • Faktor penyebut

3x² - 2x - 8 = (3x - 6)(3x + 4)/3

3x² - 2x - 8 = (x - 2)(3x + 4)

Maka diperoleh pecahan aljabar sebagai berikut:

(x² + x - 6)/(3x² - 2x - 8) = (x - 2)(x + 3)/(x - 2)(3x + 4)

(x² + x - 6)/(3x² - 2x - 8) = (x + 3)/(3x + 4)

Jadi bentuk sederhana dari (x² + x - 6)/(3x² - 2x - 8) adalah (x + 3)/(3x + 4)

Pelajari lebih lanjut

  1. Menentukan hasil pengurangan bentuk aljabar yomemimo.com/tugas/24837189
  2. Menentukan nilai persamaan bentuk aljabar yomemimo.com/tugas/25180973#

-----------------------------------------------------------------

Detil jawaban

Kelas: 8

Mapel: Matematika

Bab: Operasi bentuk aljabar

Kode: 8.2.1

Kata kunci: Menyederhanakan, bentuk, pecahan, aljabar

Semoga dengan pertanyaan yang sudah terjawab oleh dwiafifah68 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 30 Jan 20