Berikut ini adalah pertanyaan dari wwarni117 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama
B.3x pangkat 2+10x-8 per 9x-6
C.p pangkat 2 +3p-28 per p pangkat 2-16
D.x pangkat 2+ x-6 per 3x pangkat 2-2x-8
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Menyederhanakan pecahan aljabar
A. (9t² - 25)/(6t² + 10t) = (3t - 5)/2t
B. (3x² + 10x - 8)/(9x - 6) = x - 4/3
C. (p² + 3p - 28)/(p² - 16) = (p + 7)/(p + 4)
D. (x² + x - 6)/(3x² - 2x - 8) = (x + 3)/(3x + 4)
Nilai tersebut diperoleh dari memfaktorkan bentuk aljabar pada pembilang dan penyebut pecahan. Simak pembahasan berikut.
Pembahasan
Menyederhanakan pecahan aljabar
Untuk menyederhanakan pecahan, maka difaktorkan terlebih dahulu pembilang dan penyebut pada pecahan aljabar berikut.
A. (9t² - 25)/(6t³ + 10t)
Note: ralat soal agar diperoleh bentuk yang lebih sederhana
(9t² - 25)/(6t² + 10t)
jawab:
- Faktor pembilang
ingat! a² - b² = (a + b)(a - b)
9t² - 25 = 3²t² - 5²
9t² - 25 = (3t - 5)(3t - 5)
- Faktor penyebut
(6t² + 10t) = 2t (3t + 5)
Maka diperoleh pecahan aljabar sebagai berikut:
(9t² - 25)/(6t² + 10t) = (3t - 5)(3t - 5)/2t (3t + 5)
(9t² - 25)/(6t² + 10t) = (3t - 5)/2t
Jadi bentuk sederhana dari (9t² - 25)/(6t² + 10t) adalah (3t - 5)/2t
B. (3x² + 10x - 8)/(9x - 6)
jawab:
- Faktor pembilang
3x² + 10x - 8 = (3x - 6)(3x - 4)/3
3x² + 10x - 8 = (x - 2)(3x - 4)
- Faktor penyebut
9x - 6 = 3(x - 2)
Maka diperoleh pecahan aljabar sebagai berikut:
(3x² + 10x - 8)/(9x - 6) = (x - 2)(3x - 4)/3(x - 2)
(3x² + 10x - 8)/(9x - 6) = (3x - 4)/3
(3x² + 10x - 8)/(9x - 6) = 1/3 (3x - 4)
(3x² + 10x - 8)/(9x - 6) = 1/3 × 3x - 1/3 × 4
(3x² + 10x - 8)/(9x - 6) = x - 4/3
Jadi bentuk sederhana dari (3x² + 10x - 8)/(9x - 6) adalah x - 4/3
C. (p² + 3p - 28)/(p² - 16)
jawab:
- Faktor pembilang
p² + 3p - 28 = (p - 4)(p + 7)
- Faktor penyebut
ingat! a² - b² = (a + b)(a - b)
p² - 16 = p² - 4²
p² - 16 = (p - 4)(p + 4)
Maka diperoleh pecahan aljabar sebagai berikut:
(p² + 3p - 28)/(p² - 16) = (p - 4)(p + 7)/(p - 4)(p + 4)
(p² + 3p - 28)/(p² - 16) = (p + 7)/(p + 4)
Jadi bentuk sederhana dari (p² + 3p - 28)/(p² - 16) adalah (p + 7)/(p + 4)
D. (x² + x - 6)/(3x² - 2x - 8)
jawab:
- Faktor pembilang
x² + x - 6 = (x - 2)(x + 3)
- Faktor penyebut
3x² - 2x - 8 = (3x - 6)(3x + 4)/3
3x² - 2x - 8 = (x - 2)(3x + 4)
Maka diperoleh pecahan aljabar sebagai berikut:
(x² + x - 6)/(3x² - 2x - 8) = (x - 2)(x + 3)/(x - 2)(3x + 4)
(x² + x - 6)/(3x² - 2x - 8) = (x + 3)/(3x + 4)
Jadi bentuk sederhana dari (x² + x - 6)/(3x² - 2x - 8) adalah (x + 3)/(3x + 4)
Pelajari lebih lanjut
- Menentukan hasil pengurangan bentuk aljabar yomemimo.com/tugas/24837189
- Menentukan nilai persamaan bentuk aljabar yomemimo.com/tugas/25180973#
-----------------------------------------------------------------
Detil jawaban
Kelas: 8
Mapel: Matematika
Bab: Operasi bentuk aljabar
Kode: 8.2.1
Kata kunci: Menyederhanakan, bentuk, pecahan, aljabar
Semoga dengan pertanyaan yang sudah terjawab oleh dwiafifah68 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Thu, 30 Jan 20