jika fungsi f(x) = ax2 + bx + c diketahui

Berikut ini adalah pertanyaan dari chrissfe pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Jika fungsi f(x) = ax2 + bx + c diketahui f(0) = – 6, f(1) = 5, dan f(2) =28, maka f(x) = 0 untuk x =help me pls :) thanks

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jika fungsi  \text {f(x)} = \text {ax}^2 + \text {bx + c }diketahui f(0) = – 6, f(1) = 5, dan f(2) = 28, maka f(x) = 0 untuk x = -\frac{3}{2}   atau   x = \frac{2}{3}

Pendahuluan

Persamaan kuadrat merupakan suatu persamaan suku banyak (polinomial) dengan suku tertingginya adalah berpangkat 2.

Bentuk umum persamaan kuadrat yaitu : \boxed {\text {ax}^2 + \text {bx} + \text {c} = 0}

Keterangan :

a adalah koefisien dari \text x^2

b adalah koefisien dari \text x

c adalah konstanta

a, b, dan c adalah bilangan real

\text x disebut peubah (variabel)

Pembahasan

Akar-akar persamaan kuadrat dapat ditentukan  dengan :

1. Memfaktorkan

2. Melengkapkan bentuk kuadrat sempurna

3. Menggunakan rumus abc

Diketahui :

\text {f(x)} = \text {ax}^2 + \text {bx + c }

f(0) = –6,

f(1) = 5

f(2) = 28

Ditanyakan :

Nilai x, jika f(x) = 0

Jawab :

\text {f(x)} = \text {ax}^2 + \text {bx + c }

f(0) = -6, maka

\text {f(0)} = \text {a(0)}^2 + \text {b(0) + c } = -6

\text {f(0)} = 0 + \text {0 + c } = -6

⇔ c = -6

f(1) = 5, maka

\text {f(1)} = \text {a(1)}^2 + \text {b(1) + c } = 5

\text {f(1)} = \text a + \text {b + c } = 5, jika c = -6 didapat :

⇔ a + b - 6 = 5

⇔ a + b      = 5 + 6

⇔ a + b      = 11 - - - - - - - Persamaan 1

f(2) = 28, maka

\text {f(2)} = \text {a(2)}^2 + \text {b(2) + c } = 28

\text {f(2)} = 4\text a + 2\text {b + c } = 28, jika c = -6 didapat :

⇔ 4a + 2b - 6 = 28

⇔ 4a + 2b      = 28 + 6

⇔ 4a + 2b      = 34

⇔ 2a + b        = 17  - - - - - - - Persamaan 2

Didapat dua buah persamaan dengan dua variabel yang membentuk sistem (SPLDV), yaitu :

\displaystyle {\left \{ {\text {a + b = 11} \atop \text {2a + b = 17}} \right. }

Untuk mendapatkan salah satu variabel, maka dilakukan eliminasi, misalkan eliminasi variabel b

a   + b = 11

2a + b = 17      -

-a        = -6

⇔ a = 6

Nilai a = 6 disubstitusikan ke persamaan a   + b = 11, didapat :

a + b = 11

⇔ 6 + b = 11

⇔       b = 11 - 6

⇔       b = 5

Diperoleh :

a = 6, b = 5, c = -6

Selanjutnya nilai a = 6, b = 5, c = -6 disubstitusikan ke persamaan \text {f(x)} = \text {ax}^2 + \text {bx + c }, didapat :

\text {f(x)} = \text {6x}^2 + \text {5x + (-6) }

\text {f(x)} = \text {6x}^2 + \text {5x - 6 }

Menentukan nilai x, jika f(x) = 0 dengan memfaktorkan

\text {f(x)} = \text {6x}^2 + \text {5x - 6 } = 0

\text {6x}^2 + \text {5x - 6 }                   = 0

\text {6x}^2 + \text {9x - 4x - 6 }            = 0

{3\text x (2\text x + 3\text x) - 2(2\text x + 3) = 0

⇔             (2\text x + 3)(3\text x - 2) = 0

Akar-akarnya adalah :

(2x + 3) = 0 atau (3x - 2) = 0

    2x = -3   atau 3x = 2

      x = -\frac{3}{2}   atau   x = \frac{2}{3}

∴ Jadi agar f(x) = 0, nilai x yang memenuhi adalah x = -\frac{3}{2}   atau   x = \frac{2}{3}

Pelajari lebih lanjut

  1. Pengertian persamaan kuadrat : yomemimo.com/tugas/1779207
  2. Menentukan akar-akar PK dengan memfaktorkan : yomemimo.com/tugas/23882880
  3. Penyelesaian persamaan kuadrat dengan rumus abc : yomemimo.com/tugas/17271860
  4. Rumus abc : yomemimo.com/tugas/11596
  5. Menentukan persamaan kuadrat yang diketahui akar-akarnya : yomemimo.com/tugas/18269431
  6. Tentukan persamaan kuadrat yang akarnya 8 dan -2 : yomemimo.com/tugas/4992073
  7. Akar akar persamaan kuadrat 2x^2 - 5x - 3 = 0 : yomemimo.com/tugas/4039095
  8. Persamaan kuadrat : yomemimo.com/tugas/16869504

________________________________________________________

Detail Jawaban

Kelas          : 9

Mapel         : Matematika

Kategori     : Persamaan kuadrat

Kode           : 9.2.9

Kata Kunci : Persamaan kuadrat, akar-akar persamaan kuadrat

#CerdasBersamaBrainly

#BelajarBersamaBrainly

Semoga dengan pertanyaan yang sudah terjawab oleh MisterBlank dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 07 Jun 22