Point P has coordinates (k,-3). Point Q has coordinates (2,-3).

Berikut ini adalah pertanyaan dari sksooewj pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Point P has coordinates (k,-3).Point Q has coordinates (2,-3). The length of PQ is 6.5 units and k < 0 Find the value of k.​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

The value of k is –4.5.

Explanation

Distance of Two Points

It is given that:

  • Point P has coordinates (k, –3).
  • Point Q has coordinates (2, –3).
  • The length of PQ is 6.5 units.
  • k < 0

Question: Find the value of k.

SIMPLER METHOD

Looking at both ordinates, we can get that point P and point Q are collinear, on the line of y = –3. It means the distance between point P and point Q is determined by the difference of their abscissas. Considering that k < 0, we get:
\begin{aligned}d_{PQ}&=x_Q-x_P\\\Rightarrow 6.5&=2-k\\k&=2-6.5\\\therefore\ k&=\bf{-}4.5\end{aligned}

DISTANCE FORMULA METHOD

To find the value of k, we can also use the distance of two points formula derived from the Pythagorean theorem.

\begin{aligned}&d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\end{aligned}

Rewriting that formula based on known facts we have, we get:

\begin{aligned}d_{PQ}&=\sqrt{\left(x_Q-x_P\right)^2+\left(y_Q-y_P\right)^2}\\\Rightarrow\;{d_{PQ}}^2&=\left(x_Q-x_P\right)^2+\left(y_Q-y_P\right)^2\\\Rightarrow {(6.5)}^2&={(2-k)}^2+\left(-3-(-3)\right)^2\\&={(2-k)}^2+0^2\\\Rightarrow\quad\;6.5&={}\pm\sqrt{(2-k)^2}\\&={}\pm(2-k)\\&=\begin{cases}2-k\\k-2\end{cases}\\\Rightarrow\qquad k&=\begin{cases}2-6.5\\6.5+2\end{cases}\\\Rightarrow\qquad k&=\begin{cases}\bf{-}4.5\\\bf8.5\end{cases}\end{aligned}

Eliminating positive value of k, we get:
\therefore\ k=\bf{-}4.5

CONCLUSION

∴  The value of k is –4.5.

Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 19 Jul 22