[tex]\sf\lim\limits_{x \to 0}\frac{8x\cos(5x)}{{x}^{2} + 2x + \sin(4x)}=...[/tex] - Ngasal, gk

Berikut ini adalah pertanyaan dari unknown pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

\sf\lim\limits_{x \to 0}\frac{8x\cos(5x)}{{x}^{2} + 2x + \sin(4x)}=...-
Ngasal, gk ada cara => report
___
-
-

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

\sf\lim\limits_{x \to 0}\frac{8x\cos(5x)}{{x}^{2} + 2x + \sin(4x)}=\huge \boxed {\sf0}

Pengerjaan Digambar

Sifat Turunan Aljabar

y = axⁿ → y' = a.n.x^n-1

Contoh:

y = 4x²

y' = 4.2.x^2-1

y' = 8x^1

y' = 8x

_____.

Sifat Turunan Trigonometri

y = cos x → y' = sin x

y = cos ax → y' = a sin ax

y = sin x → y' = cos x

y = sin ax → y' = a cos ax

___.

Tambahan

sin a/cos a → tan a

tan 0 = 0

Jawab:4/3Penjelasan dengan langkah-langkah:[tex]\large\text{$\begin{aligned}&\lim\limits_{x\to0}\left(\frac{8x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}\lim\limits_{x\to0}\left(8\cdot\frac{x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{\cancel{x}\big(\cos(5x)\big)}{\cancel{x}\left(x+2+\frac{\sin(4x)}{x}\right)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{\cos(5x)}{x+2+\frac{\sin(4x)}{x}}\right)\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:\left(x+2+\frac{\sin(4x)}{x}\right)}\\&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:(x+2)+\lim\limits_{x\to0}\left(\frac{\sin(4x)}{x}\right)}\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&\quad\normalsize\textsf{..... aturan L'H\^opital}\\&\quad\left|\normalsize\text{$\begin{aligned}\lim\limits_{x\to0}\left(\frac{\sin(4x)}{x}\right)&=\lim\limits_{x\to0}\left(\frac{\frac{d}{dx}\sin(4x)}{\frac{d}{dx}x}\right)\\&=\lim\limits_{x\to0}\left(\frac{4\cos(4x)}{1}\right)\\&=\lim\limits_{x\to0}(4\cos(4x))\\\end{aligned}$}\right.\\\\&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:(x+2)+\lim\limits_{x\to0}(4\cos(4x))}\\\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&\quad\normalsize\textsf{..... substitusi $x$}\\&{=\:}8\cdot\frac{\cos(0)}{(0+2)+4\cos(0)}\\&{=\:}8\cdot\frac{1}{2+4\cdot1}=\frac{8}{6}\\&{=\:}\boxed{\ \bf\frac{4}{3}\ }\end{aligned}$}[/tex]Jawab:4/3Penjelasan dengan langkah-langkah:[tex]\large\text{$\begin{aligned}&\lim\limits_{x\to0}\left(\frac{8x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}\lim\limits_{x\to0}\left(8\cdot\frac{x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{\cancel{x}\big(\cos(5x)\big)}{\cancel{x}\left(x+2+\frac{\sin(4x)}{x}\right)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{\cos(5x)}{x+2+\frac{\sin(4x)}{x}}\right)\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:\left(x+2+\frac{\sin(4x)}{x}\right)}\\&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:(x+2)+\lim\limits_{x\to0}\left(\frac{\sin(4x)}{x}\right)}\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&\quad\normalsize\textsf{..... aturan L'H\^opital}\\&\quad\left|\normalsize\text{$\begin{aligned}\lim\limits_{x\to0}\left(\frac{\sin(4x)}{x}\right)&=\lim\limits_{x\to0}\left(\frac{\frac{d}{dx}\sin(4x)}{\frac{d}{dx}x}\right)\\&=\lim\limits_{x\to0}\left(\frac{4\cos(4x)}{1}\right)\\&=\lim\limits_{x\to0}(4\cos(4x))\\\end{aligned}$}\right.\\\\&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:(x+2)+\lim\limits_{x\to0}(4\cos(4x))}\\\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&\quad\normalsize\textsf{..... substitusi $x$}\\&{=\:}8\cdot\frac{\cos(0)}{(0+2)+4\cos(0)}\\&{=\:}8\cdot\frac{1}{2+4\cdot1}=\frac{8}{6}\\&{=\:}\boxed{\ \bf\frac{4}{3}\ }\end{aligned}$}[/tex]Jawab:4/3Penjelasan dengan langkah-langkah:[tex]\large\text{$\begin{aligned}&\lim\limits_{x\to0}\left(\frac{8x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}\lim\limits_{x\to0}\left(8\cdot\frac{x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{\cancel{x}\big(\cos(5x)\big)}{\cancel{x}\left(x+2+\frac{\sin(4x)}{x}\right)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{\cos(5x)}{x+2+\frac{\sin(4x)}{x}}\right)\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:\left(x+2+\frac{\sin(4x)}{x}\right)}\\&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:(x+2)+\lim\limits_{x\to0}\left(\frac{\sin(4x)}{x}\right)}\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&\quad\normalsize\textsf{..... aturan L'H\^opital}\\&\quad\left|\normalsize\text{$\begin{aligned}\lim\limits_{x\to0}\left(\frac{\sin(4x)}{x}\right)&=\lim\limits_{x\to0}\left(\frac{\frac{d}{dx}\sin(4x)}{\frac{d}{dx}x}\right)\\&=\lim\limits_{x\to0}\left(\frac{4\cos(4x)}{1}\right)\\&=\lim\limits_{x\to0}(4\cos(4x))\\\end{aligned}$}\right.\\\\&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:(x+2)+\lim\limits_{x\to0}(4\cos(4x))}\\\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&\quad\normalsize\textsf{..... substitusi $x$}\\&{=\:}8\cdot\frac{\cos(0)}{(0+2)+4\cos(0)}\\&{=\:}8\cdot\frac{1}{2+4\cdot1}=\frac{8}{6}\\&{=\:}\boxed{\ \bf\frac{4}{3}\ }\end{aligned}$}[/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Wed, 20 Apr 22