Find the smallest integer a such that 945a is a

Berikut ini adalah pertanyaan dari wooooodshshshsh pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Find the smallest integer a such that 945a is a perfect cube.

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

There is no smallest integer asuch that945a is a perfect cube.
However, if a or the perfect cube is a positive integer, the smallest integer a such that 945ais a perfect cube is1225.

Explanation

Let bbe the root of the perfect cube which is the value of945a. Thus,

\large\text{$\begin{aligned}b^3=945a\end{aligned}$}

By prime factorization, we get:

\large\text{$\begin{aligned}b^3&=3\cdot315\cdot a\\&=3\cdot3\cdot105\cdot a\\&=3\cdot3\cdot3\cdot35\cdot a\\&=3^3\cdot5\cdot7\cdot a\\\end{aligned}$}

The integer ashould be in the form of{}\pm 35^{(3k-1)}, k=1,2,3,{\dots}. Unlike perfect squares, perfect cubes could be negative. Hence, temporary solution we can get is:

\large\text{$\begin{aligned}&a=-\left(35^{(3k-1)}\right )\\&\quad k=1,2,3,{\dots}\end{aligned}$}

The larger the k is, the smaller the a will be.

THEREFORE, there is no smallest integer asuch that945a is a perfect cube.

However, if aor the perfect cube is apositive integer, the smallest integer asuch that945a is a perfect cube is:

\large\text{$\begin{aligned}a&=35^{(3\cdot1\:-\:1)}\\&=35^2\\&=\bf1225\end{aligned}$}

\blacksquare

Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 22 Aug 22