Berikut ini adalah pertanyaan dari unknown pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama
Ngasal, gk ada cara => report
___
-
-
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Pengerjaan Digambar
• Sifat Turunan Aljabar
y = axⁿ → y' = a.n.x^n-1
Contoh:
y = 4x²
y' = 4.2.x^2-1
y' = 8x^1
y' = 8x
_____.
• Sifat Turunan Trigonometri
y = cos x → y' = sin x
y = cos ax → y' = a sin ax
y = sin x → y' = cos x
y = sin ax → y' = a cos ax
___.
Tambahan
sin a/cos a → tan a
tan 0 = 0
![Jawab:4/3Penjelasan dengan langkah-langkah:[tex]\large\text{$\begin{aligned}&\lim\limits_{x\to0}\left(\frac{8x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}\lim\limits_{x\to0}\left(8\cdot\frac{x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{\cancel{x}\big(\cos(5x)\big)}{\cancel{x}\left(x+2+\frac{\sin(4x)}{x}\right)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{\cos(5x)}{x+2+\frac{\sin(4x)}{x}}\right)\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:\left(x+2+\frac{\sin(4x)}{x}\right)}\\&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:(x+2)+\lim\limits_{x\to0}\left(\frac{\sin(4x)}{x}\right)}\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&\quad\normalsize\textsf{..... aturan L'H\^opital}\\&\quad\left|\normalsize\text{$\begin{aligned}\lim\limits_{x\to0}\left(\frac{\sin(4x)}{x}\right)&=\lim\limits_{x\to0}\left(\frac{\frac{d}{dx}\sin(4x)}{\frac{d}{dx}x}\right)\\&=\lim\limits_{x\to0}\left(\frac{4\cos(4x)}{1}\right)\\&=\lim\limits_{x\to0}(4\cos(4x))\\\end{aligned}$}\right.\\\\&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:(x+2)+\lim\limits_{x\to0}(4\cos(4x))}\\\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&\quad\normalsize\textsf{..... substitusi $x$}\\&{=\:}8\cdot\frac{\cos(0)}{(0+2)+4\cos(0)}\\&{=\:}8\cdot\frac{1}{2+4\cdot1}=\frac{8}{6}\\&{=\:}\boxed{\ \bf\frac{4}{3}\ }\end{aligned}$}[/tex]](https://id-static.z-dn.net/files/d94/589998ab80ba348d4764959cc8b91949.jpg)
![Jawab:4/3Penjelasan dengan langkah-langkah:[tex]\large\text{$\begin{aligned}&\lim\limits_{x\to0}\left(\frac{8x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}\lim\limits_{x\to0}\left(8\cdot\frac{x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{\cancel{x}\big(\cos(5x)\big)}{\cancel{x}\left(x+2+\frac{\sin(4x)}{x}\right)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{\cos(5x)}{x+2+\frac{\sin(4x)}{x}}\right)\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:\left(x+2+\frac{\sin(4x)}{x}\right)}\\&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:(x+2)+\lim\limits_{x\to0}\left(\frac{\sin(4x)}{x}\right)}\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&\quad\normalsize\textsf{..... aturan L'H\^opital}\\&\quad\left|\normalsize\text{$\begin{aligned}\lim\limits_{x\to0}\left(\frac{\sin(4x)}{x}\right)&=\lim\limits_{x\to0}\left(\frac{\frac{d}{dx}\sin(4x)}{\frac{d}{dx}x}\right)\\&=\lim\limits_{x\to0}\left(\frac{4\cos(4x)}{1}\right)\\&=\lim\limits_{x\to0}(4\cos(4x))\\\end{aligned}$}\right.\\\\&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:(x+2)+\lim\limits_{x\to0}(4\cos(4x))}\\\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&\quad\normalsize\textsf{..... substitusi $x$}\\&{=\:}8\cdot\frac{\cos(0)}{(0+2)+4\cos(0)}\\&{=\:}8\cdot\frac{1}{2+4\cdot1}=\frac{8}{6}\\&{=\:}\boxed{\ \bf\frac{4}{3}\ }\end{aligned}$}[/tex]](https://id-static.z-dn.net/files/d26/12324f576b9ad6d8946438e0cef93cf3.jpg)
![Jawab:4/3Penjelasan dengan langkah-langkah:[tex]\large\text{$\begin{aligned}&\lim\limits_{x\to0}\left(\frac{8x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}\lim\limits_{x\to0}\left(8\cdot\frac{x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{x\cos(5x)}{{x}^{2}+2x+\sin(4x)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{\cancel{x}\big(\cos(5x)\big)}{\cancel{x}\left(x+2+\frac{\sin(4x)}{x}\right)}\right)\\&{=\:}8\cdot\lim\limits_{x\to0}\left(\frac{\cos(5x)}{x+2+\frac{\sin(4x)}{x}}\right)\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:\left(x+2+\frac{\sin(4x)}{x}\right)}\\&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:(x+2)+\lim\limits_{x\to0}\left(\frac{\sin(4x)}{x}\right)}\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&\quad\normalsize\textsf{..... aturan L'H\^opital}\\&\quad\left|\normalsize\text{$\begin{aligned}\lim\limits_{x\to0}\left(\frac{\sin(4x)}{x}\right)&=\lim\limits_{x\to0}\left(\frac{\frac{d}{dx}\sin(4x)}{\frac{d}{dx}x}\right)\\&=\lim\limits_{x\to0}\left(\frac{4\cos(4x)}{1}\right)\\&=\lim\limits_{x\to0}(4\cos(4x))\\\end{aligned}$}\right.\\\\&{=\:}8\cdot\frac{\lim\limits_{x\to0}{\:\cos(5x)}}{\lim\limits_{x\to0}\:(x+2)+\lim\limits_{x\to0}(4\cos(4x))}\\\end{aligned}$}[/tex][tex]\large\text{$\begin{aligned}&\quad\normalsize\textsf{..... substitusi $x$}\\&{=\:}8\cdot\frac{\cos(0)}{(0+2)+4\cos(0)}\\&{=\:}8\cdot\frac{1}{2+4\cdot1}=\frac{8}{6}\\&{=\:}\boxed{\ \bf\frac{4}{3}\ }\end{aligned}$}[/tex]](https://id-static.z-dn.net/files/d0b/6630af2e0f065b5503d3b103f11fe9b5.jpg)
Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Wed, 20 Apr 22