Berikut ini adalah pertanyaan dari Hayst pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama
Buktikan identitas trigonometri berikut:
sin²(x) + cos²(x) = 1
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Jawab dan Penjelasan dengan langkah-langkah:
Pembuktian identitas trigonometri sin²(x) + cos²(x) = 1
Pada sebuah segitiga siku-siku, sesuai dengan teorema Pythagoras, berlaku:
a² + b² = c²
di mana:
- adanb masing-masing menyatakan panjang sisi siku-sikunya
- c menyatakan panjang sisi miringnya (hipotenusa)
Misalkan sisi dengan panjang a berhadapan dengan sudut dengan besar x, dan sisi dengan panjang b berada di samping sudut tersebut, atau dengan kata lain sisi dengan panjang b dan sisi miring (dengan panjang c) mengapit sudut tersebut, maka:
- sin(x) = a / c
- cos(x) = b / c
Akan ditunjukkan bahwa sin²(x) + cos²(x) = 1
sin²(x) + cos²(x) = 1
(a/c)² + (b/c)² = 1
a²/c² + b²/c² = 1
(a² + b²)/c² = 1
c²/c² = 1
1 = 1
Ruas kiri = ruas kanan
∴ Dengan demikian, dapat disimpulkan bahwa identitas trigonometri sin²(x) + cos²(x) = 1 terbukti.
Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Tue, 03 May 22