hitung hasil dari[tex]∫ \frac{x + 3}{ \sqrt{3 + 4x -

Berikut ini adalah pertanyaan dari irsyadnurrohmapcz6u3 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Hitung hasil dari
∫ \frac{x + 3}{ \sqrt{3 + 4x - 9 {x}^{2} } } dx

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Hasil dari \displaystyle{\int\limits {\frac{x+3}{\sqrt{3+4x-9x^2}}} \, dx }adalah\displaystyle{\boldsymbol{\frac{1}{27}\left [ -3\sqrt{3+4x-9x^2}+29arcsin\left ( \frac{9x-2}{\sqrt{31}} \right ) \right ]+C} }.

PEMBAHASAN

Substitusi trigonometri dapat digunakan untuk menyelesaikan integral dengan bentuk :

\displaystyle{\sqrt{a^2-x^2}~\to~substitusi~sin\theta=\frac{x}{a}}

\displaystyle{\sqrt{x^2-a^2}~\to~substitusi~sec\theta=\frac{x}{a}}

\displaystyle{\sqrt{x^2+a^2}~\to~substitusi~tan\theta=\frac{x}{a}}

.

DIKETAHUI

\displaystyle{\int\limits {\frac{x+3}{\sqrt{3+4x-9x^2}}} \, dx= }

.

DITANYA

Tentukan hasilnya.

.

PENYELESAIAN

\displaystyle{\int\limits {\frac{x+3}{\sqrt{3+4x-9x^2}}} \, dx }

\displaystyle{=\int\limits {\frac{x+3}{\sqrt{-9\left ( x^2-\frac{4}{9}x-\frac{1}{3} \right )}}} \, dx }

\displaystyle{=\int\limits {\frac{x+3}{\sqrt{-9\left ( x^2-\frac{4}{9}x+\frac{4}{81}-\frac{1}{3}-\frac{4}{81} \right )}}} \, dx }

\displaystyle{=\int\limits {\frac{x+3}{\sqrt{-9\left [ \left ( x-\frac{2}{9} \right )^2-\frac{31}{81} \right ]}}} \, dx }

----------------

Misal :

\displaystyle{u=x-\frac{2}{9}~\to~du=dx}

----------------

\displaystyle{=\int\limits {\frac{u+\frac{2}{9}+3}{\sqrt{-9\left ( u^2-\frac{31}{81} \right )}}} \, du }

\displaystyle{=\int\limits {\frac{u+\frac{29}{9}}{\sqrt{9\left [ \left ( \frac{\sqrt{31}}{9} \right )^2-u^2 \right ]}}} \, du }

\displaystyle{=\int\limits {\frac{u+\frac{29}{9}}{3\sqrt{\left ( \frac{\sqrt{31}}{9} \right )^2-u^2}}} \, du }

----------------

Misal :

\displaystyle{sin\theta=\frac{u}{\frac{\sqrt{31}}{9}} }

\displaystyle{sin\theta=\frac{9u}{\sqrt{31}} }

\displaystyle{cos\theta d\theta=\frac{9}{\sqrt{31}}du }

----------------

\displaystyle{=\int\limits {\frac{\frac{\sqrt{31}}{9}sin\theta+\frac{29}{9}}{3\sqrt{\left ( \frac{\sqrt{31}}{9} \right )^2-\left ( \frac{\sqrt{31}}{9}sin\theta \right )^2}}} \, \left ( \frac{\sqrt{31}}{9}cos\theta d\theta \right ) }

\displaystyle{=\frac{1}{3}\times\frac{\sqrt{31}}{9}\int\limits {\frac{\frac{1}{9}\left ( \sqrt{31}sin\theta+29 \right )cos\theta}{\sqrt{\frac{31}{81}-\frac{31}{81}sin^2\theta}}} \, d\theta }

\displaystyle{=\frac{\sqrt{31}}{27}\times\frac{1}{9}\int\limits {\frac{\left ( \sqrt{31}sin\theta+29 \right )cos\theta}{\sqrt{\frac{31}{81}\left ( 1-sin^2\theta \right )}}} \, d\theta }

\displaystyle{=\frac{\sqrt{31}}{243}\int\limits {\frac{\left ( \sqrt{31}sin\theta+29 \right )cos\theta}{\frac{\sqrt{31}}{9}cos\theta}} \, d\theta }

\displaystyle{=\frac{\sqrt{31}}{243}\times\frac{9}{\sqrt{31}}\int\limits {\left ( \sqrt{31}sin\theta+29 \right )} \, d\theta }

\displaystyle{=\frac{1}{27}\int\limits {\left ( \sqrt{31}sin\theta+29 \right )} \, d\theta }

\displaystyle{=\frac{1}{27}\left ( -\sqrt{31}cos\theta+29\theta \right )+C }

-----------------

Mencari cos\theta :

\displaystyle{sin\theta=\frac{9u}{\sqrt{31}} }

\displaystyle{\frac{sisi~depan}{sisi~miring}=\frac{9u}{\sqrt{31}} }

sisi~samping=\sqrt{(sisi~miring)^2-(sisi~depan)^2}

sisi~samping=\sqrt{(\sqrt{31})^2-(9u)^2}

sisi~samping=\sqrt{31-81u^2}

.

Maka :

\displaystyle{cos\theta=\frac{sisi~samping}{sisi~miring}}

\displaystyle{cos\theta=\frac{\sqrt{31-81u^2}}{\sqrt{31}}}

----------------

\displaystyle{=\frac{1}{27}\left [ -\sqrt{31}\left ( \frac{\sqrt{31-81u^2}}{\sqrt{31}} \right )+29arcsin\left ( \frac{9u}{\sqrt{31}} \right ) \right ]+C }

\displaystyle{=\frac{1}{27}\left [ -\sqrt{31-81u^2}+29arcsin\left ( \frac{9u}{\sqrt{31}} \right ) \right ]+C }

\displaystyle{=\frac{1}{27}\left [ -\sqrt{31-81\left ( x-\frac{2}{9} \right )^2}+29arcsin\left ( \frac{9\left ( x-\frac{2}{9} \right )}{\sqrt{31}} \right ) \right ]+C }

\displaystyle{=\frac{1}{27}\left [ -\sqrt{31-81\left ( x^2-\frac{4}{9}x+\frac{4}{81} \right )}+29arcsin\left ( \frac{9x-2}{\sqrt{31}} \right ) \right ]+C }

\displaystyle{=\frac{1}{27}\left [ -\sqrt{31-81x^2+36x-4}+29arcsin\left ( \frac{9x-2}{\sqrt{31}} \right ) \right ]+C }

\displaystyle{=\frac{1}{27}\left [ -\sqrt{27+36x-81x^2}+29arcsin\left ( \frac{9x-2}{\sqrt{31}} \right ) \right ]+C }

\displaystyle{=\frac{1}{27}\left [ -\sqrt{9(3+4x-9x^2)}+29arcsin\left ( \frac{9x-2}{\sqrt{31}} \right ) \right ]+C }

\displaystyle{=\frac{1}{27}\left [ -3\sqrt{3+4x-9x^2}+29arcsin\left ( \frac{9x-2}{\sqrt{31}} \right ) \right ]+C }

.

PELAJARI LEBIH LANJUT

  1. Integral substitusi : yomemimo.com/tugas/40327197
  2. Integral substitusi : yomemimo.com/tugas/30251199

.

DETAIL JAWABAN

Kelas : 11

Mapel: Matematika

Bab : Integral

Kode Kategorisasi: 11.2.10.

Semoga dengan pertanyaan yang sudah terjawab oleh diradiradira dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sun, 24 Jul 22