Q.[tex] \\ [/tex]90¹ + 4(2²) × 3[tex] \\ [/tex](:​

Berikut ini adalah pertanyaan dari unknown pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Q.
 \\
90¹ + 4(2²) × 3

 \\

(:​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawaban

• 138

__________________________________

Pembahasan

Perkalian bilangan - bilangan dengan faktor - faktor yang sama disebut perkalian berulang. setiap perkalian berulang dituliskan dengan menggunakan bilangan berpangkat. perkalian bilangan - bilangan berpangkat dapat dituliskan dengan cara :

Contoh :

A × A × A = A³

B × B = B²

C = C¹

__________________________________

Rumus Bilangan-bilangan Berpangkat :

\boxed {\begin{array} {c} {\tt{{{a} ^{n} = a \times a \times a \times a \: ...\: sebanyak \: n \: kali}}} \: \: \: \: \: \end{array}}

__________________________________

Dimana :

\boxed {\begin {array} {c} {\sf{{\sf{\underbrace{{ \purple{a}}} _{\tiny \begin{array}{c}{ \tt{Bilangan \: pokok/Basis}}\end{array}}} ^{\underbrace{{ \purple{n}}}_{\tiny \begin{array}{c}{\tt{Pangkat/Exponen}}\end{array}}}}}} \: \: \: \: \: \end{array}}

__________________________________

Contoh :

Contoh Bilangan Berpangkat 2 :

1² = 1 × 1 = 1

2² = 2 × 2 = 4

3² = 3 × 3 = 9

4² = 4 × 4 = 16

5² = 5 × 5 = 25

6² = 6 × 6 = 36

7² = 7 × 7 = 49

8² = 8 × 8 = 64

9² = 9 × 9 = 81

10² = 10 × 10 = 100

11² = 11 × 11 = 121

12² = 12 × 12 = 144

13² = 13 × 13 = 169

14² = 14 × 14 = 196

15² = 15 × 15 = 225

16² = 16 × 16 = 256

17² = 17 × 17 = 289

18² = 18 × 18 = 324

19² = 19 × 19 = 361

20² = 20 × 20 = 400

__________________________________

Contoh Bilangan Berpangkat 3 :

1³ = 1 × 1 × 1 = 3

2³ = 2 × 2 × 2 = 9

3³ = 3 × 3 × 3 = 27

4³ = 4 × 4 × 4 = 64

5³ = 5 × 5 × 5 = 125

6³ = 6 × 6 × 6 = 216

7³ = 7 × 7 × 7 = 343

8³ = 8 × 8 × 8 = 512

9³ = 9 × 9 × 9 = 729

10³ = 10 × 10 × 10 = 1.000

11³ = 11 × 11 × 11 = 1.331

12³ = 12 × 12 × 12 = 1.728

13³ = 13 × 13 × 13 = 2.197

14³ = 14 × 14 × 14 = 2.744

15³ = 15 × 15 × 15 = 3.375

16³ = 16 × 16 × 16 = 4.096

17³ = 17 × 17 × 17 = 4.913

18³ = 18 × 18 × 18 = 5.832

19³ = 19 × 19 × 19 = 6.859

20³ = 20 × 20 × 20 = 8.000

__________________________________

Berikut adalah Cara Menghitung Bilangan Berpangkat 1, 2, dan 3 :

Bilangan Pangkat 1 :

\boxed{\color{orange} \sf{{ \bf{{• \: a}^{1} \: = \: a }}}}

__________________________________

Bilangan Pangkat 2 :

\boxed{\color{orange}\sf{{ \bf{{• \: a}^{2} \: = \: a \: \times \: a }}}}

__________________________________

Bilangan Pangkat 3 :

\boxed{\color{orange} \sf{{\bf{{• \: a}^{3} \:= \: a \: \times \: a \: \times \: a }}}}

__________________________________

Cara Menghitung Bilangan Pangkat 2 :

1² = 1 × 1 = 1

2² = 2 × 2 = 4

3² = 3 × 3 = 9

4² = 4 × 4 = 16

5² = 5 × 5 = 25

6² = 6 × 6 = 36

7² = 7 × 7 = 49

8² = 8 × 8 = 64

9² = 9 × 9 = 81

10² = 10 × 10 = 100

11² = 11 × 11 = 121

12² = 12 × 12 = 144

13² = 13 × 13 = 169

14² = 14 × 14 = 196

15² = 15 × 15 = 225

16² = 16 × 16 = 256

17² = 17 × 17 = 289

18² = 18 × 18 = 324

19² = 19 × 19 = 361

20² = 20 × 20 = 400

__________________________________

Cara Menghitung Bilangan Pangkat 3 :

1³ = 1 × 1 × 1 = 3

2³ = 2 × 2 × 2 = 9

3³ = 3 × 3 × 3 = 27

4³ = 4 × 4 × 4 = 64

5³ = 5 × 5 × 5 = 125

6³ = 6 × 6 × 6 = 216

7³ = 7 × 7 × 7 = 343

8³ = 8 × 8 × 8 = 512

9³ = 9 × 9 × 9 = 729

10³ = 10 × 10 × 10 = 1.000

11³ = 11 × 11 × 11 = 1.331

12³ = 12 × 12 × 12 = 1.728

13³ = 13 × 13 × 13 = 2.197

14³ = 14 × 14 × 14 = 2.744

15³ = 15 × 15 × 15 = 3.375

16³ = 16 × 16 × 16 = 4.096

17³ = 17 × 17 × 17 = 4.913

18³ = 18 × 18 × 18 = 5.832

19³ = 19 × 19 × 19 = 6.859

20³ = 20 × 20 × 20 = 8.000

__________________________________

Jawab :

{\sf{1.) \: {90}^{1} \: + \: 4( {2}^{2}) \: \times \: 3 }}

{\sf{ = \: 90 \: + \: 4( \: 2 \: \times \: 2 \: ) \: \times \: 3}}

{\sf{ = \: 90 \: + \: 4(4) \: \times \: 3}}

{\sf{ = \: 90 \: + \: ( \: 16 \: \times \: 3 \: )}}

{\sf{ = \: 90 \: + \: 48}}

\boxed{\sf{{ \bf{ = \: 138}}}}

__________________________________

Catatan :

• Dalam soal terdapat operasi +, -, ×, dan ÷ operasi perkalian dan pembagian lebih tinggi kedudukannya dari operasi penjumlahan dan pengurangan. Tapi, karena perkalian muncul terlebih dahulu, maka dikerjakan dari perkalian dahulu.

• Utamakan Perkalian dan Pembagian karna sama" kuat ( × ÷ )

• Pengurangan dan Pertambahan di kerjakan di paling bagian terakhir, jika ada operasi Perkalian dan Pembagian ( × ÷ + - )

• Kenapa harus Perkalian dan Pembagian di dahulukan dari pada Pertambahan dan Pengurangan, karna Perkalian dan Pembagian lebih kuat dari pada,

Pertambahan dan Pengurangan ( × ÷ + - )

____________________________

Kesimpulan :

{\mathscr{\color{violet}{1.) \: Jadi, \: hasilnya \: adalah \: }}} \: \boxed{\sf{{ \bf{138}}}}

__________________________________

Pelajari Lebih Lanjut :

• Pengertian dari bilangan berpangkat :

yomemimo.com/tugas/51531894

__________________________________

Detail Jawaban :

Mapel: Matematika

Kelas : 9

Materi : Perpangkatan

Kata Kunci : Bilangan Berpangkat

Kode Soal : 2

Kode Kategorisasi : 9.2.1

_________________________________________

\green{ \blue { \fcolorbox{yellow}{black}{ \boxed{ \bold { \orange{✓}}} \boxed{ \tt{} \orange{maykel \: serpasius}}}}}

Semoga dengan pertanyaan yang sudah terjawab oleh maykelserpasius dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 04 Oct 22