Berikut ini adalah pertanyaan dari isro2082 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
PERTIDAKSAMAAN LOGARITMA
Logaritma adalah suatu invers atau kebalikan dari pemangkatan yang juga digunakan untuk menentukan besar pangkat dari suatu bilangan pokok. Tak hanya di bidang studi matematika, logaritma juga sering digunakan pada soal perhitungan di bidang studi lain, misalnya menentukan orde reaksi dalam pelajaran laju reaksi kimia, menentukan koefisien serap bunyi dalam pelajaran akustik dan lain sebagainya.
Secara umum, operasi logaritma dapat diartikan sebagai operasi kebalikan dari suatu nilai pemangkatan menjadi menentukan pangkatnya.
Kali ini kita akan membahas beberapa contoh soal mengenai pertidaksamaan logaritma.
Agar lebih jelasnya, simak pembahasan berikut.
PEMBAHASAN :
Tulislah 10 contoh soal pertidaksamaan logaritma beserta jawabannya.
1. 5log 3x + 5 < 5log 35
Pembahasan :
Syarat nilai bilangan pada logaritma 3x + 5 > 0 atau x > -5/3 ..... (1)
3x + 5 < 35
3x < 30
x < 10 ....(2)
Jadi dari (1) dan (2) diperoleh penyelesaian -5/3 < x < 10.
2. 3log (2x + 3) > 3log 15
Pembahasan :
Syarat nilai bilangan pada logaritma 2x + 3 > 0 atau x > -3/2 ..... (1)
Perbandingan nilai pada logaritma
2x + 3 > 15
2x > 12
x > 6 ....(2)
Jadi, dari (1) dan (2) diperoleh penyelesaian x > 6.
3. 2log (6x + 2) < 2log (x + 27)
Pembahasan :
Syarat nilai bilangan pada logaritma:
6x + 2 > 0, maka x > -1/3 .... (1)
x + 27 > 0, maka x > -27 ..... (2)
Perbandingan nilai pada logaritma
6x + 2 < x + 27
6x – x < 27 – 2
5x < 25
x < 5 ..... (3)
Jadi, dari (1), (2),dan (3) diperoleh penyelesaian -1/3 < x < 5
4. 2log (5x – 16) < 6
Pembahasan :
Syarat nilai bilangan pada logaritma:
5x – 16 > 0, maka x > 16/5 .... (1)
Perbandingan nilai pada logaritma
2log (5x – 16) < 2log 26
2log (5x – 16) < 2log 64
5x – 16 < 64
5x < 80
x < 16 . . . . (2)
Jadi, dari (1) dan (2) diperoleh penyelesaian 16/5 < x < 16.
5. 4log (2x² + 24) > 4log (x² + 10x)
Pembahasan :
Syarat nilai pada logaritma.
2x² + 24 > 0 (definit positif). Jadi, berlaku untuk setiap x . . . (1)
x² + 10x > 0, maka x < -10 atau x > 0 . . . . (2)
Perbandingan nilai pada logaritma
(2x² + 24) > (x² + 10x)
2x² - x² - 10x + 24 > 0
x² - 10x + 24 > 0
(x – 4)(x – 6) >0
x < 4 atau x > 6 ....(3)
Jadi, dari (1), (2), dan (3) diperoleh penyelesaian x < -10 atau x > 6.
6. ^(x + 1)log (2x – 3) < ^(x + 1)log (x + 5)
Pembahasan :
Syarat nilai pada bilangan x + 1>0
Batas ini dibagi menjadi 2,yaitu 0 < x + 1 < 1 dan x + 1 > 1, sehingga diperoleh batas - batas berikut.
Untuk 0<x+1<1 atau -1 < x <0. . . (1)
Syarat nilai pada logaritma.
2x – 3 > 0, maka x > 3/2 . . . (2)
x + 5 > 0, maka x > -5 . . . (3)
Perbandingan nilai pada logaritma
(2x – 3) > (x + 5)
2x - x > 5 + 3
x > 8 ...(4)
Dari pertidaksamaan (1), (2), (3) dam (4), tidak ada irisan penyelesaian.
Untuk x + 1 > 1 atau x > 0 . . . (1)
Syarat nilai pada logaritma.
2x – 3 > 0, maka x>3/2 . . . (2)
x + 5 > 0, maka x > -5 . . . (3)
Perbandingan nilai pada logaritma
(2x – 3) < (x + 5)
2x - x < 5 + 3
x < 8 ...(4)
Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu 3/2 < x < 8.
Jadi, penyelesaiannya adalah 3/2 < x < 8.
7. ^(2x - 5)log (x² + 5x) > ^(2x - 5)log (4x + 12)
Pembahasan :
Syarat nilai pada bilangan 2x - 5 > 0
Batas ini dibagi menjadi 2, yaitu 0 < 2x - 5 < 1 dan 2x - 5 > 1, sehingga diperoleh batas - batas berikut.
Untuk 0< 2x - 5 < 1 atau 5/2 < x < 3. . . (1)
Syarat nilai pada logaritma.
x2 + 5x > 0, maka x < -5 atau x > 0 . . . (2)
4x + 12 > 0, maka x > -3 . . . (3)
Perbandingan nilai pada logaritma
(x² + 5x) < (4x + 12)
x² + 5x - 4x - 12 < 0
x² + x - 12 < 0
(x + 4)(x - 3) < 0
-4 < x < 3 . . . . . (4)
Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu 5/2 < x < 3.
Untuk 2x - 5 > 1 atau x > 3 . . . (1)
Syarat nilai pada logaritma.
x² + 5x > 0, maka x < -5 atau x > 0 . . . (2)
4x - 12 > 0, maka x > 3 . . . (3)
Perbandingan nilai pada logaritma
(x² + 5x) > (4x + 12)
x² + 5x - 4x - 12 > 0
x² + x - 12 > 0
(x + 4)(x - 3) > 0
x < -4 atau x > 3 . . . . . (4)
Dari pertidaksamaan (1), (2), (3) dan (4), ada irisan penyelesaian yaitu x > 3.
Jika, kedua penyelesaian digabungkan maka diperoleh penyelesaian x > 5/2 dan x < 3.
DETAIL JAWABAN
MAPEL : MATEMATIKA
KELAS : X
MATERI : BENTUK AKAR, EKSPONEN, LOGARITMA
KODE KATEGORISASI : 10.2.1.1
Semoga dengan pertanyaan yang sudah terjawab oleh heldheaeverafter dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Sun, 03 Feb 19