A cone of slant height 10 cm and diameter 12

Berikut ini adalah pertanyaan dari valjun111 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

A cone of slant height 10 cm and diameter 12 cm has a hemisphere of diameter 12 cm on top, like an ice-cream cone as shown in the diagram. Find the surface area of the figure.​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawaban:

To find the surface area of the figure, we need to find the area of the cone and the area of the hemisphere, and then add them together.

Area of the cone:

We know the slant height of the cone is 10 cm, and the diameter is 12 cm. So, the radius of the cone is 6 cm (half of the diameter). We can use the Pythagorean theorem to find the height of the cone:

10^2 = 6^2 + h^2

100 = 36 + h^2

h^2 = 64

h = 8

So, the height of the cone is 8 cm. The formula for the surface area of a cone is:

A = πrℓ + πr^2

where r is the radius of the base of the cone, ℓ is the slant height, and π is approximately 3.14.

Plugging in our values, we get:

A = π(6)(10) + π(6)^2

A = 188.4 cm^2

Area of the hemisphere:

The diameter of the hemisphere is also 12 cm, so the radius is 6 cm. The formula for the surface area of a hemisphere is:

A = 2πr^2

Plugging in our value, we get:

A = 2π(6)^2

A = 226.08 cm^2

Total surface area:

Adding the area of the cone and the area of the hemisphere, we get:

A = 188.4 + 226.08

A = 414.48 cm^2

So, the surface area of the figure is 414.48 cm^2.

Semoga dengan pertanyaan yang sudah terjawab oleh bagussugab88 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Wed, 26 Jul 23