jelaskan apa itu aljabar!berikan rumus,dan contohnya!please kak bantuin:)​

Berikut ini adalah pertanyaan dari devannydella12 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Jelaskan apa itu aljabar!berikan rumus,dan contohnya!
please kak bantuin:)​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawaban:

1.Aljabar (Algebra) merupakan salah satu cabang dalam ilmu matematika yang sangat luas cakupannya, sedangkan aljabar itu sendiri diartikan sebagai cabang ilmu dalam matematika yang mempelajari simbol matematika dan aturan aturan yang digunakan untuk memanipulasi simbol tersebut.

Unsur – Unsur Aljabar

Dalam aljabar, ada beberapa unsur yang membentuk aljabar, diantaranya

1. Variabel

Variabel sering disebut juga peubah, merupakan simbol atau lambang yang mewakili suatu bilangan, sedang bilangan tersebut belum diketahui nilainya secara jelas.

Umumnya, variabel disimbolkan dengan huruf kecil. Contohnya adalah penggunaan variabel x dan y pada 5x+2y.

2. Suku

Suku adalah nilai yang menyusun suatu bentuk aljabar, baik berwujud variabel+koefisien maupun konstanta. Terdapat berbagai macam bentuk aljabar, diantaranya

Suku satu (tidak memiliki tanda operasi hitung atau selisih). Contohnya :

3x, 4y2, 5p

Suku dua (terdapat satu tanda operasi hitung atau selisih). Contohnya:

4x+y, 5p+3r, 7x2+7

Suku tiga (terdapat 2 tanda operasi hitung atau selisih). Contohnya :

3a+b+3, x+y+5z

3. Koefisien

Koefisien adalah faktor konstanta dari suatu suku, berupa sebuah bilangan yang menempel pada variabel. Misalnya pada 3x maka 3 adalah koefisiennya.

4. Konstanta

Konstanta merupakan suku pada aljabar yang tidak memuat variabel, hanya berupa bilangan saja. Contohnya pada aljabar 3x+8 maka 8 adalah konstantanya.

OPERASI BENTUK ALJABAR

1. Penjumlahan dan Pengurangan Aljabar

a. Sifat Komutatif

a + b = b + a

b. Sifat Asosiatif

(a+b) + c = a + (b+c)

c. Sifat Distributif

a (b+c) = ab + ac

Contoh

6mn + 3mn = 9 mn

6m + 3(m2 – n2) – 2m2 + 3n2 = 6m + 3m2 – 3n2 – 2m2 + 3n2

= m2 + 6m

2. Perkalian Bentuk Aljabar

a. Perkalian satu suku dengan suku dua

contoh

–9p(5p – 2q) = -45p2 + 18 pq

b. Perkalian suku dua dengan suku dua

contoh

(x+5) (x+3) = (x+5) x + (x+5) 3

= x2 + 5x + 3x + 15

= x2 + 8x + 15

3. Pembagian Bentuk Aljabar

“pembagian bentuk aljabar akan lebih mudah jika dibuat dalam bentuk pecahan”

Contoh

9x : 3 = 9x/3 = 3x

15pq : 5q = 15pq / 5 q = 3p

4. Perpangkatan Bentuk Aljabar

Materi pangkat sebenarnya sudah dipelajari dikelas 7 SMP. Pada intinya sama, bilangan pangkat didefinisikan sebagai:

an = a x a x a x … x a (a sebanyak n)

Contoh jika diaplikasikan dalam bentuk aljabar

(2a)3 = 2a x 2a x 2a = 2 x 2 x 2 x a x a x a = 8a3

(4x2y)2 = 4x2y x 4x2y = 16 x4 y2

(a+b)2 = a2 + 2ab + b2

(a-b)2 = a2 – 2ab + b2

PEMFAKTORAN BENTUK ALJABAR

1. Pemfaktoran menggunakan Sifat Distributif

Contoh:

Coba sobat tentukan Faktor dari 5ab + 10b

untuk menentukan faktor dari 5ab + 10b sobat cari dulu faktor persekutuan terbesar (FPB) dari 5 dan 10 serta dari ab dan b. FPB dari 5 dan 10 adalah 5 dan persekutuan terbesar ab dan b adalah b. Jadi kita keluarkan 5b.

5ab + 10b = 5b (a+2b)

2. Pemfaktoran Selisih Dua Kuadrat

Yang disebut dengan bentuk selisih dua kuadrat adalah:

a2 – b2 = (a+b) (a-b)

Contoh

25x2 – y2 = (5x + y) (5x – y)

20p2 – 5q2 = 5 (4p2 – q2) = 5 (2p + q) (2p – q)

3. Pemfaktoran Bentuk Kuadrat

a. Pemfaktoran ax2 + bx + c dengan a = 1

Bentuk aljabar kuadrat x2 + (p + q)x + pq dapat sobat difaktorkan menjadi (x + p) (x + q).

Misalkan, x2 + (p + q)x + pq = ax2 + bx + c sehingga a = 1, b = p + q,dan c = pq.

Dari pemisalan tersebut, dapat dilihat bahwa p dan q merupakan faktor dari c. Jika p dan q dijumlahkan, hasilnya adalah b. Dengan demikian untuk memfaktorkan bentuk ax2 + bx + c dengan a = 1, tentukan dua bilangan yang merupakan faktor dari c dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan b.

Contoh

x2 + 5x + 6 = (x + …) (x + …)

Sobat misalkan, x2 + 5x + 6 = ax2 + bx + c, diperoleh a = 1, b = 5, dan c = 6.

Untuk mengisi titik-titik, tentukan dua bilangan yang merupakan faktor dari 6 dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan 5. Faktor dari 6 adalah 6 dan 1 atau 2 dan 3, yang memenuhi syarat adalah 2 dan 3 karena 2 + 3 = 5

Jadi, x2 + 5x + 6 = (x + 2) (x + 3)

b. Pemfaktoran Bentuk ax2 + bx + c dengan a ≠ 1

Sebelumnya, sobat telah memfaktorkan bentuk ax2 + bx + c dengan a = 1. Sekarang kamu akan mempelajari cara memfaktorkan bentuk ax2 + bx + c dengan a ≠ 1.

Perhatikan contoh berikut:

(x + 3) (2x + 1) = 2x2 + x + 6x + 3

= 2x2 + 7x + 3

Dengan kata lain, bentuk 2x2 + 7x + 3 difaktorkan menjadi (x + 3) (2x + 1). Adapun cara memfaktorkan 2×2 + 7x + 3 adalah dengan membalikkan tahapan perkalian suku dua di atas.

2x2 + 7x + 3 = 2x2 + (x + 6 x) +3

= (2x2 + x) + (6x + 3)

= x (2x + 1) + 3(2x + 1)

= (x + 3)(2x+1)

Semoga dengan pertanyaan yang sudah terjawab oleh andiharisbande97 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 07 Jan 21