Jika ₁ dan x₂ merupakan akar persamaan x² + x

Berikut ini adalah pertanyaan dari Abunttt pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Jika ₁ dan x₂ merupakan akar persamaan x² + x - 20 = 0 dengan X1 >X2, nilai X1- X2 adalah.... A. -9 B. -1 C. 1 D. 9 ​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jika x₁danx₂merupakanakarpersamaanx² + x – 20 = 0denganx₁ > x₂, nilai x₁ – x₂adalah9 (opsi D).
Hal ini dapat diperoleh dengan beberapa cara penyelesaian.

Penjelasan dengan langkah-langkah:

Cara 1: Dengan mencari nilai x₁ dan x₂.

x² + x – 20 = 0 dapat difaktorkan sebagai:
(x – 4)(x + 5) = 0

Sehingga akar-akarnya:
x – 4 = 0  atau  x + 5 = 0
x = 4  atau  x = –5

Karena x₁ > x₂, maka x₁ = 4danx₂ = –5, yang mengakibatkan:
x₁ – x₂ = 4 – (–5) = 9
\blacksquare

Cara 2: Dengan rumus

Jika x₁ dan x₂ merupakan akar persamaan ax² + bx + c = 0, maka:

  • x₁ + x₂ = –b/a
  • x₁x₂ = c/a

Sehingga, dengan x₁ > x₂, selisih kedua akar tersebut dapat diperoleh dari:
x₁ – x₂ = √(x₁ – x₂)²
⇒ x₁ – x₂ = √[(x₁ + x₂)² – 4x₁x₂]
⇒ x₁ – x₂ = √[(–b/a)² – 4c/a]
⇒ x₁ – x₂ = √[b²/a² – 4c/a]
⇒ x₁ – x₂ = √[b²/a² – 4ac/a²]
⇒ x₁ – x₂ = √[(b² – 4ac) / a²]
x₁ – x₂ = [ √(b² – 4ac) ] / a
x₁ – x₂ = (√D)/a

Oleh karena itu, dengan a = 1, b = 1, dan c = –20, yang diambil dari persamaan kuadrat x² + x – 20 = 0, dapat diperoleh:
x₁ – x₂ = [ √(1² – 4·1·(–20) ] / 1
⇒ x₁ – x₂ = √[1 – (–80)]
⇒ x₁ – x₂ = √81
x₁ – x₂ = 9

Dari sini, dapat disimpulkan juga bahwa jika x₁ < x₂, maka x₁ – x₂ = –9.
\blacksquare

Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 05 Jan 23