Berikut ini adalah pertanyaan dari albertaldo19 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama
![kak tolong di bantu ya kalau bisa jawab aku kasih bintang lima and bener bantuin nomer 1,2 pakai cara dan gambar lihat perintah yang ada di gambar ](https://id-static.z-dn.net/files/d78/b2d73d1237e618b6c16f11c37abb6532.jpg)
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Penyelesaian
f(x)=x²+2x-8
-------------------------
a.
x²+2x-8=0
(x+4)(x-2)=0
x=-4 atau x=2
b.
(-4,0) dan (2,0)
c.
0²+2(0)-8
=-8
(0,-8)
d.-b/2a
=-2/2(1)
=-1
e.f(-1)=(-1)²+2(-1)-8
f(-1)=1-2-8
f(-1)=-9
f. koordinat titik balik nya adalah -9
g. terlampir
--------------------------------------------------
2.)
f(x)=-x²+x+6
f(-3)=-(-3)²+(-3)+6=-9-3+6=-12+6=-6
f(-2)=-(-2)²+(-2)+6=-4-2+6=0
f(-1)=-(-1)²+(-1)+6=-1-1+6=-2+6=4
f(0)=0+0+6=6
f(1)=-(1)²+1+6=6
f(2)=-(2)²+2+6=4
f(3)=-(3)²+3+6=0
f(4)=-(4)²+4+6=-6
a.) x=-2 dan x=3
b.) (-2,0) dan (3,0)
c.) (0,6)
d.)-b/2a=-1/2(-1)=1/2 x=1/2
e.)f(1/2)=-(1/2)²+1/2+6=-1/4+1/2+6=6¼
f.)(½,6¼)
g.)Terlampir
Semoga membantu
![Penyelesaianf(x)=x²+2x-8-------------------------a.x²+2x-8=0(x+4)(x-2)=0x=-4 atau x=2b.(-4,0) dan (2,0)c.0²+2(0)-8=-8(0,-8)d.-b/2a=-2/2(1)=-1e.f(-1)=(-1)²+2(-1)-8f(-1)=1-2-8f(-1)=-9f. koordinat titik balik nya adalah -9g. terlampir--------------------------------------------------2.)f(x)=-x²+x+6f(-3)=-(-3)²+(-3)+6=-9-3+6=-12+6=-6f(-2)=-(-2)²+(-2)+6=-4-2+6=0f(-1)=-(-1)²+(-1)+6=-1-1+6=-2+6=4f(0)=0+0+6=6f(1)=-(1)²+1+6=6f(2)=-(2)²+2+6=4f(3)=-(3)²+3+6=0f(4)=-(4)²+4+6=-6a.) x=-2 dan x=3b.) (-2,0) dan (3,0)c.) (0,6)d.)-b/2a=-1/2(-1)=1/2 x=1/2e.)f(1/2)=-(1/2)²+1/2+6=-1/4+1/2+6=6¼f.)(½,6¼)g.)TerlampirSemoga membantu](https://id-static.z-dn.net/files/d99/8549d0d76e1e090e14fed8f3546af7e4.jpg)
![Penyelesaianf(x)=x²+2x-8-------------------------a.x²+2x-8=0(x+4)(x-2)=0x=-4 atau x=2b.(-4,0) dan (2,0)c.0²+2(0)-8=-8(0,-8)d.-b/2a=-2/2(1)=-1e.f(-1)=(-1)²+2(-1)-8f(-1)=1-2-8f(-1)=-9f. koordinat titik balik nya adalah -9g. terlampir--------------------------------------------------2.)f(x)=-x²+x+6f(-3)=-(-3)²+(-3)+6=-9-3+6=-12+6=-6f(-2)=-(-2)²+(-2)+6=-4-2+6=0f(-1)=-(-1)²+(-1)+6=-1-1+6=-2+6=4f(0)=0+0+6=6f(1)=-(1)²+1+6=6f(2)=-(2)²+2+6=4f(3)=-(3)²+3+6=0f(4)=-(4)²+4+6=-6a.) x=-2 dan x=3b.) (-2,0) dan (3,0)c.) (0,6)d.)-b/2a=-1/2(-1)=1/2 x=1/2e.)f(1/2)=-(1/2)²+1/2+6=-1/4+1/2+6=6¼f.)(½,6¼)g.)TerlampirSemoga membantu](https://id-static.z-dn.net/files/d16/ae21515361dc1689babf2538b1b340fd.jpg)
![Penyelesaianf(x)=x²+2x-8-------------------------a.x²+2x-8=0(x+4)(x-2)=0x=-4 atau x=2b.(-4,0) dan (2,0)c.0²+2(0)-8=-8(0,-8)d.-b/2a=-2/2(1)=-1e.f(-1)=(-1)²+2(-1)-8f(-1)=1-2-8f(-1)=-9f. koordinat titik balik nya adalah -9g. terlampir--------------------------------------------------2.)f(x)=-x²+x+6f(-3)=-(-3)²+(-3)+6=-9-3+6=-12+6=-6f(-2)=-(-2)²+(-2)+6=-4-2+6=0f(-1)=-(-1)²+(-1)+6=-1-1+6=-2+6=4f(0)=0+0+6=6f(1)=-(1)²+1+6=6f(2)=-(2)²+2+6=4f(3)=-(3)²+3+6=0f(4)=-(4)²+4+6=-6a.) x=-2 dan x=3b.) (-2,0) dan (3,0)c.) (0,6)d.)-b/2a=-1/2(-1)=1/2 x=1/2e.)f(1/2)=-(1/2)²+1/2+6=-1/4+1/2+6=6¼f.)(½,6¼)g.)TerlampirSemoga membantu](https://id-static.z-dn.net/files/d52/5f354a4b0f11723f6ba8a74441333c37.jpg)
![Penyelesaianf(x)=x²+2x-8-------------------------a.x²+2x-8=0(x+4)(x-2)=0x=-4 atau x=2b.(-4,0) dan (2,0)c.0²+2(0)-8=-8(0,-8)d.-b/2a=-2/2(1)=-1e.f(-1)=(-1)²+2(-1)-8f(-1)=1-2-8f(-1)=-9f. koordinat titik balik nya adalah -9g. terlampir--------------------------------------------------2.)f(x)=-x²+x+6f(-3)=-(-3)²+(-3)+6=-9-3+6=-12+6=-6f(-2)=-(-2)²+(-2)+6=-4-2+6=0f(-1)=-(-1)²+(-1)+6=-1-1+6=-2+6=4f(0)=0+0+6=6f(1)=-(1)²+1+6=6f(2)=-(2)²+2+6=4f(3)=-(3)²+3+6=0f(4)=-(4)²+4+6=-6a.) x=-2 dan x=3b.) (-2,0) dan (3,0)c.) (0,6)d.)-b/2a=-1/2(-1)=1/2 x=1/2e.)f(1/2)=-(1/2)²+1/2+6=-1/4+1/2+6=6¼f.)(½,6¼)g.)TerlampirSemoga membantu](https://id-static.z-dn.net/files/dd3/a37d2adc190283774658e653360f708f.jpg)
Semoga dengan pertanyaan yang sudah terjawab oleh Duone dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Fri, 06 Jan 23