Berikut ini adalah pertanyaan dari JustEkaa31 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama
Prove that PAOB and BOCQ are both cyclic quadilaterals
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
To prove that quadrilateral PAOB is cyclic, we need to show that the opposite angles of this quadrilateral add up to 180 degrees. Since PA and PB are tangent to the circle, we have ∠PAB = ∠PBA, and similarly, ∠POB = ∠PBA. Therefore,
∠PAO + ∠PBO = ∠PAB + ∠POB = ∠PBA + ∠PBA = 2∠PBA
Also, since O is the center of the circle Γ, we have ∠PBA = 90° - ∠BOC/2. Substituting this into the above equation, we get:
∠PAO + ∠PBO = 2(90° - ∠BOC/2) = 180° - ∠BOC
But we are given that ∠AOB + ∠BOC < 180°, which implies that ∠PAO + ∠PBO > ∠AOB. Therefore, we have:
∠PAO + ∠PBO > ∠AOB > ∠BOC
Adding ∠BOC to both sides, we get:
∠PAO + ∠PBO + ∠BOC > ∠AOB + ∠BOC
∠PAO + ∠PBO + ∠BOC > 180°
This implies that quadrilateral PAOB is cyclic.
Similarly, to prove that quadrilateral BOCQ is cyclic, we can use the same argument as above with the roles of A and C swapped, and show that the opposite angles of quadrilateral BOCQ add up to 180 degrees. Thus, both PAOB and BOCQ are cyclic quadrilaterals.
Semoga dengan pertanyaan yang sudah terjawab oleh Nazer dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Sat, 12 Aug 23