Diketahui AABC dengan AB = AC, jika besar ZA =

Berikut ini adalah pertanyaan dari ezrasebastian551 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Diketahui AABC dengan AB = AC, jika besar ZA = 3yº, <B
= 72°, dan <C = 2xº, nilai x + y =​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawab:

48

Penjelasan dengan langkah-langkah:

Pertama, gambar dulu segitiganya.

Coba lihat di gambar, kan AB=AC, berarti ABC segitiga samakaki.

Karena ABC samakaki, berarti \angle B=\angle C. Maka,

\angle B=\angle C\\72=2x\\\frac{72}{2}=x\\36=x

Berarti x=36.

Kita tahu juga kalau total sudut segitia (apapun bentuk segitganya) adalah 180\textdegree. Artinya,

\angle A+\angle B+\angle C=180\textdegree\\3y+72+2x=180\\3y+72+2(36)=180\\3y+72+72=180\\3y+144=180\\3y=180-144\\3y=36\\y=\frac{36}{3}\\y=12

Maka, x+y=36+12=\fbox{48}

================================

Terimakasih, semangat yaa :D

Boleh jadikan ini jawaban terbaik.

================================

Jawab:48Penjelasan dengan langkah-langkah:Pertama, gambar dulu segitiganya.Coba lihat di gambar, kan AB=AC, berarti ABC segitiga samakaki.Karena ABC samakaki, berarti [tex]\angle B=\angle C[/tex]. Maka,[tex]\angle B=\angle C\\72=2x\\\frac{72}{2}=x\\36=x[/tex]Berarti [tex]x=36[/tex].Kita tahu juga kalau total sudut segitia (apapun bentuk segitganya) adalah [tex]180\textdegree[/tex]. Artinya,[tex]\angle A+\angle B+\angle C=180\textdegree\\3y+72+2x=180\\3y+72+2(36)=180\\3y+72+72=180\\3y+144=180\\3y=180-144\\3y=36\\y=\frac{36}{3}\\y=12[/tex]Maka, [tex]x+y=36+12=\fbox{48}[/tex]================================Terimakasih, semangat yaa :DBoleh jadikan ini jawaban terbaik.================================

Semoga dengan pertanyaan yang sudah terjawab oleh akbarsdtazm dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 18 Jul 23