2 pertanyaan ada pada gambar, jangan ngasal yaaa. tysm ​

Berikut ini adalah pertanyaan dari HuangDira pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

2 pertanyaan ada pada gambar, jangan ngasal yaaa. tysm ​
2 pertanyaan ada pada gambar, jangan ngasal yaaa. tysm ​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawaban:

jawaban no. 1 adalah E

jawaban no. 2 adalah C

Penjelasan dengan langkah-langkah:

lihat di gambar di atas

maaf kalo salah

Nomor 1[tex]\large\text{$\begin{aligned}\frac{ab\sqrt{c}}{\sqrt{a}\sqrt{bc}}=\boxed{\,\bf\sqrt{ab}\,}\end{aligned}$}[/tex]Nomor 2[tex]\large\text{$\begin{aligned}\frac{\sqrt{a}\sqrt[3]{bc}}{\sqrt[6]{{a}^2{b}^4{c}^3}}=\boxed{\,\sqrt[\bf6]{\bf\frac{a}{b^2c}}\,}\end{aligned}$}[/tex](untuk kedua soal, jawabannya tidak ada pada opsi jawaban) PembahasanNomor 1[tex]\large\text{$\begin{aligned}\frac{ab\sqrt{c}}{\sqrt{a}\sqrt{bc}}&=\frac{ab\sqrt{c}}{\sqrt{a}\sqrt{b}\sqrt{c}}\\&=\frac{a}{\sqrt{a}}\cdot\frac{b}{\sqrt{b}}\cdot\frac{\cancel{\sqrt{c}}}{\cancel{\sqrt{c}}}\\&=\frac{\cancel{\sqrt{a}}\sqrt{a}}{\cancel{\sqrt{a}}}\cdot\frac{\cancel{\sqrt{b}}\sqrt{b}}{\cancel{\sqrt{b}}}\\&=\sqrt{a}\sqrt{b}\\&=\boxed{\,\bf\sqrt{ab}\,}\end{aligned}$}[/tex][tex]\blacksquare[/tex]Nomor 2[tex]\large\text{$\begin{aligned}\frac{\sqrt{a}\sqrt[3]{bc}}{\sqrt[6]{{a}^2{b}^4{c}^3}}&=\frac{\sqrt[6]{a^3b^2c^2}}{\sqrt[6]{{a}^2{b}^4{c}^3}}\\&=\sqrt[6]{\frac{a^3b^2c^2}{{a}^2{b}^4{c}^3}}\\&=\sqrt[6]{a^{3-2}\,b^{2-4}\,c^{2-3}}\\&=\sqrt[6]{a\,b^{-2}\,c^{-1}}\\&=\boxed{\,\sqrt[\bf6]{\bf\frac{a}{b^2c}}\,}\\\end{aligned}$}[/tex][tex]\blacksquare[/tex]Nomor 1[tex]\large\text{$\begin{aligned}\frac{ab\sqrt{c}}{\sqrt{a}\sqrt{bc}}=\boxed{\,\bf\sqrt{ab}\,}\end{aligned}$}[/tex]Nomor 2[tex]\large\text{$\begin{aligned}\frac{\sqrt{a}\sqrt[3]{bc}}{\sqrt[6]{{a}^2{b}^4{c}^3}}=\boxed{\,\sqrt[\bf6]{\bf\frac{a}{b^2c}}\,}\end{aligned}$}[/tex](untuk kedua soal, jawabannya tidak ada pada opsi jawaban) PembahasanNomor 1[tex]\large\text{$\begin{aligned}\frac{ab\sqrt{c}}{\sqrt{a}\sqrt{bc}}&=\frac{ab\sqrt{c}}{\sqrt{a}\sqrt{b}\sqrt{c}}\\&=\frac{a}{\sqrt{a}}\cdot\frac{b}{\sqrt{b}}\cdot\frac{\cancel{\sqrt{c}}}{\cancel{\sqrt{c}}}\\&=\frac{\cancel{\sqrt{a}}\sqrt{a}}{\cancel{\sqrt{a}}}\cdot\frac{\cancel{\sqrt{b}}\sqrt{b}}{\cancel{\sqrt{b}}}\\&=\sqrt{a}\sqrt{b}\\&=\boxed{\,\bf\sqrt{ab}\,}\end{aligned}$}[/tex][tex]\blacksquare[/tex]Nomor 2[tex]\large\text{$\begin{aligned}\frac{\sqrt{a}\sqrt[3]{bc}}{\sqrt[6]{{a}^2{b}^4{c}^3}}&=\frac{\sqrt[6]{a^3b^2c^2}}{\sqrt[6]{{a}^2{b}^4{c}^3}}\\&=\sqrt[6]{\frac{a^3b^2c^2}{{a}^2{b}^4{c}^3}}\\&=\sqrt[6]{a^{3-2}\,b^{2-4}\,c^{2-3}}\\&=\sqrt[6]{a\,b^{-2}\,c^{-1}}\\&=\boxed{\,\sqrt[\bf6]{\bf\frac{a}{b^2c}}\,}\\\end{aligned}$}[/tex][tex]\blacksquare[/tex]Nomor 1[tex]\large\text{$\begin{aligned}\frac{ab\sqrt{c}}{\sqrt{a}\sqrt{bc}}=\boxed{\,\bf\sqrt{ab}\,}\end{aligned}$}[/tex]Nomor 2[tex]\large\text{$\begin{aligned}\frac{\sqrt{a}\sqrt[3]{bc}}{\sqrt[6]{{a}^2{b}^4{c}^3}}=\boxed{\,\sqrt[\bf6]{\bf\frac{a}{b^2c}}\,}\end{aligned}$}[/tex](untuk kedua soal, jawabannya tidak ada pada opsi jawaban) PembahasanNomor 1[tex]\large\text{$\begin{aligned}\frac{ab\sqrt{c}}{\sqrt{a}\sqrt{bc}}&=\frac{ab\sqrt{c}}{\sqrt{a}\sqrt{b}\sqrt{c}}\\&=\frac{a}{\sqrt{a}}\cdot\frac{b}{\sqrt{b}}\cdot\frac{\cancel{\sqrt{c}}}{\cancel{\sqrt{c}}}\\&=\frac{\cancel{\sqrt{a}}\sqrt{a}}{\cancel{\sqrt{a}}}\cdot\frac{\cancel{\sqrt{b}}\sqrt{b}}{\cancel{\sqrt{b}}}\\&=\sqrt{a}\sqrt{b}\\&=\boxed{\,\bf\sqrt{ab}\,}\end{aligned}$}[/tex][tex]\blacksquare[/tex]Nomor 2[tex]\large\text{$\begin{aligned}\frac{\sqrt{a}\sqrt[3]{bc}}{\sqrt[6]{{a}^2{b}^4{c}^3}}&=\frac{\sqrt[6]{a^3b^2c^2}}{\sqrt[6]{{a}^2{b}^4{c}^3}}\\&=\sqrt[6]{\frac{a^3b^2c^2}{{a}^2{b}^4{c}^3}}\\&=\sqrt[6]{a^{3-2}\,b^{2-4}\,c^{2-3}}\\&=\sqrt[6]{a\,b^{-2}\,c^{-1}}\\&=\boxed{\,\sqrt[\bf6]{\bf\frac{a}{b^2c}}\,}\\\end{aligned}$}[/tex][tex]\blacksquare[/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Wed, 05 Oct 22