Question: ​A rectangular sheet of paper of length 35 cm and

Berikut ini adalah pertanyaan dari BloosmyFairy pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Question: ​A rectangular sheet of paper of length 35 cm and breadth 28 cm is folded in two ways to form a cylinder. Find the difference in the volumes of cylinders formed.

⚠️ Need Full Explanation in English"
- ⚠️ No copy
- ⚠️No Paste
- ✅ Happy Answering​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Given

  • A rectangular sheet of paper of length 35 cm and breadth 28 cm is folded in two ways to form a cylinder.

To find

  • The difference in the volumes of cylinders formed.

Solution

\begin{gathered}\\\bold\dag\:{\sf{\purple{Length\:of\: rectangular\:sheet}}} =\sf 35 cm \end{gathered}

\begin{gathered}\bold\dag\:{\sf{\purple{Breadth\:of\: rectangular\:sheet}}} =\sf 28 cm\\\\\end{gathered}

⠀⠀

A rectangular sheet is folded in two ways to form a cylinder

⠀⠀

\begin{gathered}\\\qquad\qquad\maltese\;\;\;\:{\underline{\sf{\green{First\:way :-}}}}\\\\\end{gathered}

⠀⠀

A rectangular sheet is folded along its breadth to form a cylinder

⠀⠀

\begin{gathered}\\\bold\dag\:{\sf{\blue{Breadth= height\:of\:a\:cylinder}}} =\sf 28 cm \end{gathered}

\begin{gathered}\bold\dag\:{\sf{\blue{Length = Circumference\:of\:a\: cylinder}}} =\sf 35 cm \\\\\end{gathered}

⠀⠀

Let's find out radius of a cylinder

⠀⠀

\begin{gathered}\\\bullet\:{\underline{\sf{\orange{Circumference\:of\:circle = 2\pi r = Length}}}}\\\\\end{gathered}

\begin{gathered}\implies\sf 35 = 2 \times \dfrac{22}{7} \times r \\\\\end{gathered}

\begin{gathered}\implies\sf 35 = \dfrac{44r}{7} \\\\\end{gathered}

\begin{gathered}\implies\sf 35 = \dfrac{44r}{7}\\\\\end{gathered}

\begin{gathered}\implies\sf r = \dfrac{35\times 7}{44}\\\\\end{gathered}

\begin{gathered}\implies\sf r = 5.5cm\\\end{gathered}

\begin{gathered}\therefore{\underline{\boxed{\sf{Radius\:of\:a\: cylinder = 5.5 cm}}}}\\\\\end{gathered}

\begin{gathered}\\\implies\sf \pi r^2 h \\\\\end{gathered}

\begin{gathered}\implies\sf \dfrac{22}{7}\times 5.5 \times 5.5 \times 28 \\\\\end{gathered}

\begin{gathered}\implies\sf 22\times 5.5 \times 5.5 \times 4 \\\\\end{gathered}

\begin{gathered}\implies\sf 2662cm^2\\\end{gathered}

\therefore{\underline{\boxed{\sf{Volume\:of\:a\: cylinder(V_1) = 2662 cm^3}}}}

⠀⠀

 ____________________________________________

⠀⠀\begin{gathered}\\\qquad\qquad\maltese\;\;\;\:{\underline{\sf{\green{Second\;way :-}}}}\\\\\end{gathered}

⠀⠀

A rectangular sheet is folded along its length to form a cylinder

⠀⠀

\begin{gathered}\\\bold\dag\:{\sf{\blue{Length= height\:of\:a\:cylinder}}} =\sf 35 cm \end{gathered}

\begin{gathered}\bold\dag\:{\sf{\blue{Breadth = Circumference\:of\:a\: cylinder}}} =\sf 28cm \\\\\end{gathered}

⠀⠀

Let's find out radius of a cylinder

⠀⠀

\begin{gathered}\\\bullet\:{\underline{\sf{\orange{Circumference\:of\:circle = 2\pi r = Breadth}}}}\\\\\end{gathered}

\begin{gathered}\implies\sf 28 = 2 \times \dfrac{22}{7} \times r \\\\\end{gathered}

\begin{gathered}\implies\sf \cancel\dfrac{28}{2} = \dfrac{22r}{7} \\\\\end{gathered}

\begin{gathered}\implies\sf 14 = \dfrac{22r}{7}\\\\\end{gathered}

\begin{gathered}\implies\sf r = \dfrac{14\times 7}{22}\\\\\end{gathered}

\begin{gathered}\implies\sf r = 4.4cm\\\end{gathered}

\begin{gathered}\therefore{\underline{\boxed{\sf{Radius\:of\:a\: cylinder = 4.4 cm}}}}\\\\\end{gathered}

\begin{gathered}\\ \\ \sf{\pink{Volume_ {( \: Cylinder)} = \pi r^2 h}} \\\\\end{gathered}

\begin{gathered}\implies\sf \dfrac{22}{7}\times 4.4 \times 4.4 \times 35 \\\\\end{gathered}

\begin{gathered}\implies\sf 22\times 4.4 \times 4.4 \times 5 \\\\\end{gathered}

\begin{gathered}\implies\sf 2129.6cm^2\\\end{gathered}

\begin{gathered}\therefore{\underline{\boxed{\sf{Volume\:of\:a\: cylinder(V_2) = 2129.6 cm^3}}}}\\\\\end{gathered}

⠀⠀

Difference between the volumes of cylinder formed

⠀⠀

\begin{gathered}\\\implies\sf V_1 - V_2 \\\\\end{gathered}

\begin{gathered}\implies\sf 2662 - 2129.6 \\\\\end{gathered}

\implies\sf 532.4 cm^3

\therefore{\underline{\boxed{\sf{Difference\:between\:in\:the\: volumes= 532.4 cm^3}}}} ___________________________________________

Semoga dengan pertanyaan yang sudah terjawab oleh unknown dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sun, 06 Jun 21