[tex]_{0}\int {}^{8} ( \sqrt{144 - 2 {x}^{2} } -

Berikut ini adalah pertanyaan dari unknown pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

_{0}\int {}^{8} ( \sqrt{144 - 2 {x}^{2} } - 12 + x)dx = ???

Help................​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Hasil dari \int\limits^8_0 {\left ( \sqrt{144-2x^2}-12+x \right )} \, dxadalah\boldsymbol{4\sqrt{2}\left [ 9arcsin\left ( \frac{2\sqrt{2}}{3} \right )+2\sqrt{2} \right ]-64}.

PEMBAHASAN

Integral merupakan operasi yang menjadi kebalikan dari operasi turunan/diferensial. Sehingga integral sering juga disebut sebagai antiturunan.

f(x)=\int\limits {\left [ \frac{df(x)}{dx} \right ]} \, dx

Substitusi trigonometri dapat digunakan untuk menyelesaikan integral dengan bentuk :

\sqrt{a^2-x^2}~\to~substitusi~sin\theta=\frac{x}{a}

\sqrt{x^2-a^2}~\to~substitusi~sec\theta=\frac{x}{a}

\sqrt{x^2+a^2}~\to~substitusi~tan\theta=\frac{x}{a}

.

DIKETAHUI

\int\limits^8_0 {\left ( \sqrt{144-2x^2}-12+x \right )} \, dx=

.

DITANYA

Tentukan hasil integralnya.

.

PENYELESAIAN

\int\limits^8_0 {\left ( \sqrt{144-2x^2}-12+x \right )} \, dx

=\int\limits^8_0 {\sqrt{144-2x^2}} \, dx+\int\limits^8_0 {\left ( -12+x \right )} \, dx

.

Misal

A=\int\limits^8_0 {\sqrt{144-2x^2}} \, dx

A=\int\limits^8_0 {\sqrt{144-2x^2}} \, dx

A=\int\limits^8_0 {\sqrt{2(72-x^2)}} \, dx

A=\int\limits^8_0 {\sqrt{2}\sqrt{72-x^2}} \, dx

Gunakan substitusi trigonometri.

sin\theta=\frac{x}{6\sqrt{2}}

6\sqrt{2}sin\theta=x

6\sqrt{2}cos\theta d\theta=dx

.

A=\int\limits^8_0 {\sqrt{2}\sqrt{72-(6\sqrt{2}sin\theta)^2}} \, (6\sqrt{2}cos\theta d\theta)

A=12\int\limits^8_0 {cos\theta\sqrt{72(1-sin^2\theta)}} \, d\theta

A=12\int\limits^8_0 {cos\theta\sqrt{72cos^2\theta}} \, d\theta

A=12\sqrt{72}\int\limits^8_0 {cos^2\theta} \, d\theta

A=12\sqrt{72}\int\limits^8_0 {\left ( \frac{1}{2}+\frac{1}{2}cos2\theta \right )} \, d\theta

A=12\sqrt{72}\left ( \frac{1}{2}\theta+\frac{1}{4}sin2\theta \right )\Bigr|^8_0

A=3\sqrt{72}\left ( 2\theta+sin2\theta \right )\Bigr|^8_0

A=3\sqrt{72}\left ( 2arcsin\left ( \frac{x}{6\sqrt{2}} \right )+2sin\theta cos\theta \right )\Bigr|^8_0

A=3\sqrt{72}\left ( 2arcsin\left ( \frac{x}{6\sqrt{2}} \right )+2\left ( \frac{x}{6\sqrt{2}} \right )\left ( \frac{\sqrt{72-x^2}}{6\sqrt{2}} \right ) \right )\Bigr|^8_0

A=3\sqrt{72}\left [ 2arcsin\left ( \frac{8}{6\sqrt{2}} \right )+2\left ( \frac{8}{6\sqrt{2}} \right )\left ( \frac{\sqrt{72-8^2}}{6\sqrt{2}} \right )-\left ( 2arcsin\left ( \frac{0}{6\sqrt{2}} \right )+2\left ( \frac{0}{6\sqrt{2}} \right )\left ( \frac{\sqrt{72-0^2}}{6\sqrt{2}} \right ) \right ) \right ]

A=3\sqrt{72}\left [ 2arcsin\left ( \frac{4}{3\sqrt{2}} \right )+2\left ( \frac{4}{3\sqrt{2}} \right )\left ( \frac{2\sqrt{2}}{6\sqrt{2}} \right )-\left ( 0+(0)\left ( \frac{\sqrt{72}}{6\sqrt{2}} \right ) \right ) \right ]

A=18\sqrt{2}\left [ 2arcsin\left ( \frac{2\sqrt{2}}{3} \right )+\frac{4\sqrt{2}}{9} \right ]

A=18\sqrt{2}\times\frac{2}{9}\left [ 9arcsin\left ( \frac{2\sqrt{2}}{3} \right )+2\sqrt{2} \right ]

A=4\sqrt{2}\left [ 9arcsin\left ( \frac{2\sqrt{2}}{3} \right )+2\sqrt{2} \right ]

.

.

Misal

B=\int\limits^8_0 {(-12+x)} \, dx

B=-12x+\frac{1}{2}x^2\Bigr|^8_0

B=-12(8)+\frac{1}{2}(8)^2-[-12(0)+\frac{1}{2}(0)^2]

B=-64

.

Maka :

\int\limits^8_0 {\left ( \sqrt{144-2x^2}-12+x \right )} \, dx

=\int\limits^8_0 {\sqrt{144-2x^2}} \, dx+\int\limits^8_0 {\left ( -12+x \right )} \, dx

=A+B

=4\sqrt{2}\left [ 9arcsin\left ( \frac{2\sqrt{2}}{3} \right )+2\sqrt{2} \right ]-64

.

KESIMPULAN

Hasil dari \int\limits^8_0 {\left ( \sqrt{144-2x^2}-12+x \right )} \, dxadalah\boldsymbol{4\sqrt{2}\left [ 9arcsin\left ( \frac{2\sqrt{2}}{3} \right )+2\sqrt{2} \right ]-64}.

.

PELAJARI LEBIH LANJUT

  1. Integral substitusi trigonometri : yomemimo.com/tugas/40327197
  2. Integral substitusi trigonometri : yomemimo.com/tugas/30251199
  3. Integral substitusi trigonometri : yomemimo.com/tugas/30205263

.

DETAIL JAWABAN

Kelas : 11

Mapel: Matematika

Bab : Integral

Kode Kategorisasi: 11.2.10

Kata Kunci : integral, antiturunan, substitusi, trigonometri.

Hasil dari [tex]\int\limits^8_0 {\left ( \sqrt{144-2x^2}-12+x \right )} \, dx[/tex] adalah [tex]\boldsymbol{4\sqrt{2}\left [ 9arcsin\left ( \frac{2\sqrt{2}}{3} \right )+2\sqrt{2} \right ]-64}[/tex].PEMBAHASANIntegral merupakan operasi yang menjadi kebalikan dari operasi turunan/diferensial. Sehingga integral sering juga disebut sebagai antiturunan. [tex]f(x)=\int\limits {\left [ \frac{df(x)}{dx} \right ]} \, dx[/tex]Substitusi trigonometri dapat digunakan untuk menyelesaikan integral dengan bentuk :[tex]\sqrt{a^2-x^2}~\to~substitusi~sin\theta=\frac{x}{a}[/tex] [tex]\sqrt{x^2-a^2}~\to~substitusi~sec\theta=\frac{x}{a}[/tex][tex]\sqrt{x^2+a^2}~\to~substitusi~tan\theta=\frac{x}{a}[/tex].DIKETAHUI[tex]\int\limits^8_0 {\left ( \sqrt{144-2x^2}-12+x \right )} \, dx=[/tex].DITANYATentukan hasil integralnya..PENYELESAIAN[tex]\int\limits^8_0 {\left ( \sqrt{144-2x^2}-12+x \right )} \, dx[/tex][tex]=\int\limits^8_0 {\sqrt{144-2x^2}} \, dx+\int\limits^8_0 {\left ( -12+x \right )} \, dx[/tex].Misal [tex]A=\int\limits^8_0 {\sqrt{144-2x^2}} \, dx[/tex] [tex]A=\int\limits^8_0 {\sqrt{144-2x^2}} \, dx[/tex][tex]A=\int\limits^8_0 {\sqrt{2(72-x^2)}} \, dx[/tex][tex]A=\int\limits^8_0 {\sqrt{2}\sqrt{72-x^2}} \, dx[/tex]Gunakan substitusi trigonometri.[tex]sin\theta=\frac{x}{6\sqrt{2}}[/tex][tex]6\sqrt{2}sin\theta=x[/tex][tex]6\sqrt{2}cos\theta d\theta=dx[/tex].[tex]A=\int\limits^8_0 {\sqrt{2}\sqrt{72-(6\sqrt{2}sin\theta)^2}} \, (6\sqrt{2}cos\theta d\theta)[/tex][tex]A=12\int\limits^8_0 {cos\theta\sqrt{72(1-sin^2\theta)}} \, d\theta[/tex][tex]A=12\int\limits^8_0 {cos\theta\sqrt{72cos^2\theta}} \, d\theta[/tex][tex]A=12\sqrt{72}\int\limits^8_0 {cos^2\theta} \, d\theta[/tex][tex]A=12\sqrt{72}\int\limits^8_0 {\left ( \frac{1}{2}+\frac{1}{2}cos2\theta \right )} \, d\theta[/tex][tex]A=12\sqrt{72}\left ( \frac{1}{2}\theta+\frac{1}{4}sin2\theta \right )\Bigr|^8_0[/tex][tex]A=3\sqrt{72}\left ( 2\theta+sin2\theta \right )\Bigr|^8_0[/tex][tex]A=3\sqrt{72}\left ( 2arcsin\left ( \frac{x}{6\sqrt{2}} \right )+2sin\theta cos\theta \right )\Bigr|^8_0[/tex][tex]A=3\sqrt{72}\left ( 2arcsin\left ( \frac{x}{6\sqrt{2}} \right )+2\left ( \frac{x}{6\sqrt{2}} \right )\left ( \frac{\sqrt{72-x^2}}{6\sqrt{2}} \right ) \right )\Bigr|^8_0[/tex][tex]A=3\sqrt{72}\left [ 2arcsin\left ( \frac{8}{6\sqrt{2}} \right )+2\left ( \frac{8}{6\sqrt{2}} \right )\left ( \frac{\sqrt{72-8^2}}{6\sqrt{2}} \right )-\left ( 2arcsin\left ( \frac{0}{6\sqrt{2}} \right )+2\left ( \frac{0}{6\sqrt{2}} \right )\left ( \frac{\sqrt{72-0^2}}{6\sqrt{2}} \right ) \right ) \right ][/tex][tex]A=3\sqrt{72}\left [ 2arcsin\left ( \frac{4}{3\sqrt{2}} \right )+2\left ( \frac{4}{3\sqrt{2}} \right )\left ( \frac{2\sqrt{2}}{6\sqrt{2}} \right )-\left ( 0+(0)\left ( \frac{\sqrt{72}}{6\sqrt{2}} \right ) \right ) \right ][/tex][tex]A=18\sqrt{2}\left [ 2arcsin\left ( \frac{2\sqrt{2}}{3} \right )+\frac{4\sqrt{2}}{9} \right ][/tex][tex]A=18\sqrt{2}\times\frac{2}{9}\left [ 9arcsin\left ( \frac{2\sqrt{2}}{3} \right )+2\sqrt{2} \right ][/tex][tex]A=4\sqrt{2}\left [ 9arcsin\left ( \frac{2\sqrt{2}}{3} \right )+2\sqrt{2} \right ][/tex]..Misal[tex]B=\int\limits^8_0 {(-12+x)} \, dx[/tex][tex]B=-12x+\frac{1}{2}x^2\Bigr|^8_0[/tex][tex]B=-12(8)+\frac{1}{2}(8)^2-[-12(0)+\frac{1}{2}(0)^2][/tex][tex]B=-64[/tex].Maka :[tex]\int\limits^8_0 {\left ( \sqrt{144-2x^2}-12+x \right )} \, dx[/tex][tex]=\int\limits^8_0 {\sqrt{144-2x^2}} \, dx+\int\limits^8_0 {\left ( -12+x \right )} \, dx[/tex][tex]=A+B[/tex][tex]=4\sqrt{2}\left [ 9arcsin\left ( \frac{2\sqrt{2}}{3} \right )+2\sqrt{2} \right ]-64[/tex].KESIMPULANHasil dari [tex]\int\limits^8_0 {\left ( \sqrt{144-2x^2}-12+x \right )} \, dx[/tex] adalah [tex]\boldsymbol{4\sqrt{2}\left [ 9arcsin\left ( \frac{2\sqrt{2}}{3} \right )+2\sqrt{2} \right ]-64}[/tex]..PELAJARI LEBIH LANJUTIntegral substitusi trigonometri : https://brainly.co.id/tugas/40327197Integral substitusi trigonometri : https://brainly.co.id/tugas/30251199Integral substitusi trigonometri : https://brainly.co.id/tugas/30205263.DETAIL JAWABANKelas : 11Mapel: MatematikaBab : IntegralKode Kategorisasi: 11.2.10Kata Kunci : integral, antiturunan, substitusi, trigonometri.

Semoga dengan pertanyaan yang sudah terjawab oleh diradiradira dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Wed, 14 Jul 21