the sum of the first n term of a series

Berikut ini adalah pertanyaan dari VanessaIvanaa29381 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

the sum of the first n term of a series is given by sn = 2n(n 3) show that the term of the series form an aritmathic progression

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawaban:

Note:

It's not clear whether it's  S_n=2n(n-3)  or  S_n=2n(n+3).

So, there will be 2 cases.

Barisan Aritmetika (Arithmetic Progression)

Case 1:  S_n=2n(n-3)

Finding the  a_n  formula

\large\text{$\begin{aligned}S_n&=2n(n-3)\\a_n&=S_n-S_{n-1}\\&=2n(n-3)-2(n-1)(n-1-3)\\&=2n(n-3)-2(n-1)(n-4)\\&=2n(n-3)-2n(n-4)+2n-8\\&=2n(n-3-(n-4))+2n-8\\&=2n(n-3-n+4)+2n-8\\&=2n(-3+4)+2n-8\\&=2n(1)+2n-8\\&=2n+2n-8\\&=4n-8\\\therefore\ a_n&=\bf4n-8\end{aligned}$}

Thus, the term of the  S_n=2n(n-3)  form an arithmetic progressionof–4, 0, 4, 8, 12, ... .

The difference between each term equals to 4.

Case 2: S_n=2n(n+3)

Finding the  a_n  formula

\large\text{$\begin{aligned}S_n&=2n(n+3)\\a_n&=S_n-S_{n-1}\\&=2n(n+3)-2(n-1)(n-1+3)\\&=2n(n+3)-2(n-1)(n+2)\\&=2n(n+3)-2n(n+2)+2n+4\\&=2n(n+3-(n+2))+2n+4\\&=2n(n+3-n-2)+2n+4\\&=2n(3-2)+2n+4\\&=2n(1)+2n+4\\&=2n+2n+4\\&=4n+4\\\therefore\ a_n&=\bf4n+4\end{aligned}$}

Thus, the term of the  S_n=2n(n+3)  form an arithmetic progressionof8, 12, 16, 20, 24, ... .

The difference between each term equals to 4, which is the same as case 1.

Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sat, 04 Jun 22