tolongno 1 - 10 pakai cara...​

Berikut ini adalah pertanyaan dari uhm69 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Tolong
no 1 - 10
pakai cara...​
tolongno 1 - 10 pakai cara...​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

 \mathbb \color{aqua} \underbrace{JAWABAN}

  1.  \bf D. \: \boxed{ \: \bf 1.296 \: } \\
  2.  \bf A. \: \small \boxed{ \: \bf \frac{16}{81} \: } \\
  3.  \bf A. \: \boxed{ \: \bf - 2 \frac{10}{27} \: }
  4.  \bf B. \: \boxed{ \: \bf - 5 \frac{23}{64} \: } \\
  5.  \bf D. \: \boxed{ \: \bf 625 {x}^{4} \: } \\
  6.  \bf D. \: \boxed{ \: \bf 10 \sqrt{2} \: } \\
  7.  \bf B. \: \boxed{ \: \bf4 \sqrt[3]{2} \: } \\
  8.  \bf C. \: \boxed{ \: \bf {(8a)}^{ \frac{1}{5} } \: } \\
  9.  \bf C. \: \boxed{ \: \bf{ [2{(x - y) }^{3} ] }^{ \frac{1}{4} } \: } \\
  10.  \bf B. \: \boxed{ \: \bf {x}^{ \frac{1}{2} } {y}^{ - \frac{2}{5} } \: } \\

------------------

 \mathbb \color{orange} \underbrace{PENYELESAIAN}

SOAL 1 :

 \boxed{ \: \tt{ \left({\small \frac{1}{a}} \right)}^{ - n} = {a}^{n} \: } \\

 \small \displaystyle \left( \tt{ \frac{1}{6} }\right)^{ - 4}

 \tt = {6}^{4}

 \tt = 6 \times 6 \times 6 \times 6

 \tt = \bf1.296

 \\

SOAL 2 :

 \small \displaystyle \tt { \left( - \frac{2}{3} \right) }^{4}

 = \small \displaystyle \tt \left( - \frac{2}{3} \right) \times \left( - \frac{2}{3} \right) \times \left( - \frac{2}{3} \right) \times \left( - \frac{2}{3} \right)

 = \small \displaystyle \bf \frac{16}{81}

 \\

SOAL 3 :

 \boxed{ \: \tt {a}^{ - n} = \small \frac{1}{ {a}^{n} } \: } \\

 \small \displaystyle \tt { \left( - \frac{3}{4} \right) }^{ - 3}

 = \small \displaystyle \tt \frac{1}{{ \left( - \frac{3}{4} \right) }^{3} }

 = \small \displaystyle \tt \frac{1}{ \left( - \frac{3}{4} \right) \times \left( - \frac{3}{4} \right) \times \left( - \frac{3}{4} \right)}

 = \small \displaystyle \tt \frac{1}{ - \frac{27}{64} }

 = \small \displaystyle \tt - \frac{64}{27}

 = \small \displaystyle \bf - 2 \frac{10}{27}

 \\

SOAL 4 :

 \small \displaystyle \tt { \left( - 1 \frac{3}{4} \right) }^{3}

 = \small \displaystyle \tt { \left( - \frac{7}{4} \right) }^{3}

 = \small \displaystyle \tt \left( - \frac{7}{4} \right) \times \left( - \frac{7}{4} \right) \times \left( - \frac{7}{4} \right)

 = \small \displaystyle \tt - \frac{343}{64}

 = \small \displaystyle \bf - 5 \frac{23}{64}

 \\

SOAL 5 :

 \boxed{ \: \tt{ \left({\small \frac{1}{a}} \right)}^{ - n} = {a}^{n} \: } \\

 \small \displaystyle \tt { \left( \frac{1}{5x} \right) }^{ - 4}

 = \displaystyle \tt {(5x)}^{4}

 = \displaystyle \tt {5}^{4} {x}^{4}

 \tt = (5 \times 5 \times 5 \times 5) {x}^{4}

 \tt = \bf 625 {x}^{4}

 \\

SOAL 6 :

 \displaystyle \tt \sqrt{200}

 = \displaystyle \tt \sqrt{100 \times 2}

 = \displaystyle \bf10 \sqrt{2}

 \\

SOAL 7 :

 \displaystyle \tt \sqrt[3]{128}

 = \displaystyle \tt \sqrt[3]{64 \times 2}

 = \displaystyle \bf4 \sqrt[3]{2}

 \\

SOAL 8 :

 \boxed{ \: \tt \sqrt[n]{ {a}^{m} } = {a}^{ \frac{m}{n} } \: } \\

 \displaystyle \tt \sqrt[5]{8a}

 = \displaystyle \tt \sqrt[5]{{(8a)}^{1} }

 = \displaystyle \bf {(8a)}^{ \frac{1}{5} }

 \\

SOAL 9 :

 \boxed{ \: \tt \sqrt[n]{ {a}^{m} } = {a}^{ \frac{m}{n} } \: } \\

 \displaystyle \tt \sqrt[4]{2( {x - y)}^{3} }

 = \displaystyle \tt \sqrt[4]{[2{( x - y)}^{3} } ]{}^{1}

 = \displaystyle \bf{ [2{(x - y) }^{3} ] }^{ \frac{1}{4} }

 \\

SOAL 10 :

 \boxed{ \: \begin{aligned} \tt \sqrt[n]{ {a}^{m} } &= \tt {a}^{ \frac{m}{n} } \\ \tt {a}^{ - n} &= \small \tt \frac{1}{ {a}^{n} } \end{aligned} \: } \\

 \small \displaystyle \tt \frac{ \sqrt{x} }{ \sqrt[5]{ {y}^{2} } }

 = \small \displaystyle \tt \frac{ {x}^{ \frac{1}{2} } }{ {y}^{ \frac{2}{5} } }

 = \displaystyle \bf {x}^{ \frac{1}{2} } {y}^{ - \frac{2}{5} }

 \colorbox{ff0000}{} \colorbox{ff4000}{}\colorbox{ff8000}{}\colorbox{ffc000}{}\colorbox{ffff00}{}\colorbox{c0ff00}{}\colorbox{80ff00}{}\colorbox{40ff00}{}\colorbox{00ff00}{}\colorbox{00ff40}{}\colorbox{00ff80}{}\colorbox{00ffc0}{}\colorbox{00ffff}{}\colorbox{00c0ff}{}\colorbox{0080ff}{}\colorbox{0040ff}{}\colorbox{0000ff}{}\colorbox{4000ff}{}\colorbox{8000ff}{}\colorbox{c000ff}{}\colorbox{ff00ff}{}\colorbox{ff00c0}{}\colorbox{ff00a0}{}\colorbox{ff0080}{}\colorbox{ff0040}{}

Semoga dengan pertanyaan yang sudah terjawab oleh Gusti2601 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 18 Oct 22