rumus cara mencari panjang sisi dari bidang diagonal kubus dan

Berikut ini adalah pertanyaan dari nothing12 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

rumus cara mencari panjang sisi dari bidang diagonal kubus dan balok beserta contoh soal masing-masing satu​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Diagonal Bidang, Ruang, dan Bidang Diagonal Balok

KUBUS DAN BALOK

Dalam kehidupan sehari-hari kita seing melihat benda-berbentuk balok, misalnya penghapus, pembungkus sabun mandi, dan lain sebagainya. Di dalam balok kita akan mengenal istilah diagonal bidang atau diagonal sisi, diagonal ruang dan bidang diagonal.

Diagonal Bidang Balok

Diagonal bidang suatu balok adalah ruas garis yang menghubungkan dua titik sudut yang berhadapan pada setiap bidang atau sisi balok. Untuk memahami definisi tersebut coba perhatikan bidang TUVW pada gambar di bawah ini.

Ruas garis yang menghubungkan titik sudut T dan V serta U dan W disebut diagonal bidang atau diagonal sisi. Dengan demikian, bidang TUVW mempunyai dua diagonal bidang, yaitu TV dan UW . Jadi, setiap bidang pada balok mempunyai dua diagonal bidang. Karena balok memiliki 6 bidang sisi, maka balok memiliki 12 diagonal bidang atau diagonal sisi. Bagaimana cara menghitung panjang diagonal bidang atau diagonal sisi pada balok?

Untuk mencari panjang diagonal bidang atau sisi dapat menggunakan teorema phytagoras. Sekarang perhatikan gambar balok di bawah ini.

Misalkan balok PQRS.TUVW di atas memiliki panjang p, lebar l, dan tinggi t. Maka panjang TV dapat dihitung dengan menggunakan teorema phytagoras, di mana segitiga TUV siku-siku di U. Sehingga:

TV = √(TU2 + UV2)

TV = √(p2 + l2)

Untuk lebih memantapkan pemahaman Anda tentang diagonal sisi, silahkan perhatikan contoh soal berikut ini.

Contoh Soal

Perhatikan gambar di bawah berikut ini.

Diketahui panjang AB = 12 cm, BC = 8 cm dan AE = 5 cm. Hitunglah:

a) panjang AF

b) panjang AC

c) panjang AH

Penyelesaian:

a) Panjang AF dapat dihitung dengan teorema phytagoras. Perhatikan segitiga ABF siku-siku di B, maka:

AF = √(AB2 + BF2)

AF = √(122 + 52)

AF = √(144 + 25)

AF = √169

AF = 13 cm

b) Perhatikan segitiga ABC siku-siku di B, maka:

AC = √(AB2 + BC2)

AF = √(122 + 82)

AF = √(144 + 64)

AF = √208

AF = 4√13 cm

c) Perhatikan segitiga AEH siku-siku di E, maka:

AC = √(AE2 + EH2)

AF = √(52 + 82)

AF = √(25 + 64)

AF = √89 cm

Diagonal Ruang Balok

Diagonal ruang pada balok adalah ruas garis yang menghubungkan dua titik sudut yang berhadapan dalam suatu ruang. Untuk memahami definisi tersebut coba perhatikan gambar berikut di bawah ini.

Hubungkan titik P dan V, Q dan W, R dan T, atau S dan U. Garis PV, garis QW, garis RT, dan garis SU disebut diagonal ruang. Diagonal-diagonal ruang tersebut akan berpotongan di satu titik. Suatu balok memiliki empat buah diagonal ruang yang sama panjang dan berpotongan pada satu titik. Bagaimana menghitung panjang diagonal ruang balok?

Sama seperti mencari diagonal bidang, untuk mencari diagonal ruang juga menggunakan teorema phyagoras. Sekarang perhatikan gambar di bawah ini.

Misalkan balok ABCD.EFGH di atas memiliki panjang p, lebar l, dan tinggi t. Maka panjang AG dapat dihitung dengan menggunakan teorema phytagoras. Tetapi sebelum itu harus cari panjang AC, di mana AC merupakan diagonal sisi. Sekarang perhatikan segitiga ABC  siku-siku di B. Sehingga:

AC = √(AB2 + BC2)

AC = √(p2 + l2)

Sekarang cari panjang AG dengan teorema phytagoras juga. Sekarang perhatikan segitiga ACG  siku-siku di G. Sehingga:

AG = √(AC2 + CG2)

AG = √(√(p2 + l2)2 + t2)

AG = √(p2 + l2 + t2)

Misalkan diagonal ruang balok adalah d maka secara umum diagonal ruang balok dapat dirumuskan:

d = √(p2 + l2 + t2)

Untuk lebih memantapkan pemahaman Anda tentang diagonal ruang, silahkan perhatikan contoh soal berikut ini.

Contoh Soal

Sebuah balok memiliki panjang 12 cm, lebar 8 cm dan tinggi 4 cm. Hitung berapa

Penyelesaian:

d = √(p2 + l2 + t2)

d = √(122 + 82 + 42)

d = √224

d = 4√14 cm  

Bidang Diagonal

Bidang diagonal suatu balok adalah bidang yang dibatasi oleh dua rusuk dan dua diagonal bidang suatu balok. Untuk memahami definisi tersebut coba perhatikan balok PQRS.TUVW pada gambar di bawah ini.  

Bidang PRVT dan PWVQ disebut bidang diagonal. Jadi balok memiliki enam bidang diagonal yang berbentuk persegi panjang dan tiap pasangnya kongruen. Bagaimana menghitung luas bidang diagonal?

Untuk menghitung luas bidang diagonal dapat menggunakan rumus luas persegi panjang. Untuk lebih memantapkan pemahaman Anda tentang diagonal ruang, silahkan perhatikan contoh soal berikut ini.

Contoh Soal

Perhatikan gambar di bawah berikut ini.

 

Diketahui panjang AB = 12 cm, BC = 8 cm dan AE = 6 cm. Hitunglah luas bidang diagonal ABGH!

Penyelesaiaan:  

Jika digambarkan akan tampak seperti gambar di bawah ini.

Terlebih dahulu harus cari panjang BG dengan teorema phytagoras.

BG = √(BC2 + CG2)

BG = √(82 + 62)

BG = √(64 + 36)

BG = √100

BG = 10 cm

Luas bidang diagonal ABGH dapat dicari dengan rumus persegi panjang, yakni:

Luas ABGH = AB . BG

Luas ABGH = 12 cm . 10 cm

Luas ABGH = 120 cm2

Semoga dengan pertanyaan yang sudah terjawab oleh MichaelAlex12 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Wed, 12 May 21