22/04 122 Hitunglah volume limas segiempat beraturan dengan panjang rusuk

Berikut ini adalah pertanyaan dari syahrul123ra pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

22/04 122 Hitunglah volume limas segiempat beraturan dengan panjang rusuk alas 10 cm dan tingg limas 12 cm! Alas suatu limas berbentuk segitiga siku-siku dengan panjang sisi 5 cm, 12 cm dan 13 cm Jika volume limas 160 cm, hitunglah tinggi limas tersebut! T.DEFG adalah limas segiempat beraturan dengan panjang DF = 12 cm, TD = 10 cm. a. Gambarkan sketsa limas! c. Hitunglah volume limas! b. Tentukan tinggi limas!​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Pendahulan

Limas adalah bangun ruang tiga dimensi yang memiliki sisi alas dan sisi selimut

Volume limas dapat dihitung menggunakan rumus sebagai berikut :

\small\boxed{\tt{ \frac{1}{3} \times a \times t}}

=====================

Luas permukaan limas dapat dihitung menggunakan rumus sebagai berikut :

\small\boxed{\tt{Lalas + Lselimut}}

Soal

 \\

1) Hitunglah volume limas segiempat beraturan dengan panjang rusuk alas 10 cm dan tinggi limas 12 cm!

 \\

2) Alas suatu limas berbentuk segitiga siku-siku dengan panjang sisi 5 cm, 12 cm dan 13 cm Jika volume limas 160 cm, hitunglah tinggi limas tersebut!

 \\

3) T.DEFG adalah limas segiempat beraturan dengan panjang DF = 12 cm, TD = 10 cm

 \\

a. Gambarkan sketsa limas!

b. Tentukan tinggi limas!

c. Hitunglah volume limas!

 \\

Pembahasan

Nomor 1

\small\boxed{\tt{ = \frac{1}{3} \times a \times t}}

 \sf\ = \frac{1}{3} \times (10.10) \times 12

 \sf= 4 \times 100

 \sf = 400 \: {cm}^{3}

 \\

Nomor 2

\small\boxed{\tt{ Volume =\frac{1}{3} \times a \times t}}

 \sf\ 160 = \frac{1}{3} \times ( \frac{1}{2} (5.10.13) \times t

 \sf\ 160 = \frac{1}{2} × 780 \times t

 \sf 80 = 260 \times t

 \sf t = \frac{260}{80}

 3,25\: {cm}^{3}

 \\

Nomor 3

1) Tinggi limas

DO

= 1/2 ÷ DF

= 1/2 ÷ 12

= 6 cm

= TO

= √(TD² - OD²)

= √(10² - 6²)

= √(100 - 36)

= √64

= 8 cm

 \\

2) Panjang sisi

= DE = EF, Jadi :

DF² = DE² + EF²

12² = s² + s²

144 = 2s²

s² = 144 ÷ 2

s² = 72

s = √72

s = √(2 × 36)

s = 6√2 cm

 \\

3) Volume limas

= 1/3 × L alas × t

= 1/3 × s² × t

= 1/3 × (6√2)² × 8

= 1/3 × 72 × 8

= 24 × 8

= 192 cm³

 \\

➡ Detail jawaban

Kelas : 8

Pelajaran : Matematika

Kategori : Bangun Ruang

Kata Kunci : Limas

PendahulanLimas adalah bangun ruang tiga dimensi yang memiliki sisi alas dan sisi selimutVolume limas dapat dihitung menggunakan rumus sebagai berikut :[tex]\small\boxed{\tt{ \frac{1}{3} \times a \times t}}[/tex]=====================Luas permukaan limas dapat dihitung menggunakan rumus sebagai berikut :[tex]\small\boxed{\tt{Lalas + Lselimut}}[/tex]Soal[tex] \\ [/tex]1) Hitunglah volume limas segiempat beraturan dengan panjang rusuk alas 10 cm dan tinggi limas 12 cm! [tex] \\ [/tex]2) Alas suatu limas berbentuk segitiga siku-siku dengan panjang sisi 5 cm, 12 cm dan 13 cm Jika volume limas 160 cm, hitunglah tinggi limas tersebut! [tex] \\ [/tex]3) T.DEFG adalah limas segiempat beraturan dengan panjang DF = 12 cm, TD = 10 cm[tex] \\ [/tex]a. Gambarkan sketsa limas!b. Tentukan tinggi limas!c. Hitunglah volume limas! [tex] \\ [/tex]PembahasanNomor 1[tex]\small\boxed{\tt{ = \frac{1}{3} \times a \times t}}[/tex][tex] \sf\ = \frac{1}{3} \times (10.10) \times 12 [/tex] [tex] \sf= 4 \times 100 [/tex][tex] \sf = 400 \: {cm}^{3} [/tex][tex] \\ [/tex]Nomor 2[tex]\small\boxed{\tt{ Volume =\frac{1}{3} \times a \times t}}[/tex][tex] \sf\ 160 = \frac{1}{3} \times ( \frac{1}{2} (5.10.13) \times t[/tex] [tex] \sf\ 160 = \frac{1}{2} × 780 \times t[/tex] [tex] \sf 80 = 260 \times t [/tex][tex] \sf t = \frac{260}{80}[/tex][tex] 3,25\: {cm}^{3} [/tex][tex] \\ [/tex]Nomor 31) Tinggi limasDO = 1/2 ÷ DF= 1/2 ÷ 12= 6 cm= TO= √(TD² - OD²)= √(10² - 6²)= √(100 - 36)= √64= 8 cm[tex] \\ [/tex]2) Panjang sisi = DE = EF, Jadi :DF² = DE² + EF²12² = s² + s²144 = 2s²s² = 144 ÷ 2s² = 72s = √72s = √(2 × 36)s = 6√2 cm[tex] \\ [/tex]3) Volume limas= 1/3 × L alas × t= 1/3 × s² × t= 1/3 × (6√2)² × 8= 1/3 × 72 × 8= 24 × 8= 192 cm³[tex] \\ [/tex]➡ Detail jawabanKelas : 8Pelajaran : MatematikaKategori : Bangun RuangKata Kunci : LimasPendahulanLimas adalah bangun ruang tiga dimensi yang memiliki sisi alas dan sisi selimutVolume limas dapat dihitung menggunakan rumus sebagai berikut :[tex]\small\boxed{\tt{ \frac{1}{3} \times a \times t}}[/tex]=====================Luas permukaan limas dapat dihitung menggunakan rumus sebagai berikut :[tex]\small\boxed{\tt{Lalas + Lselimut}}[/tex]Soal[tex] \\ [/tex]1) Hitunglah volume limas segiempat beraturan dengan panjang rusuk alas 10 cm dan tinggi limas 12 cm! [tex] \\ [/tex]2) Alas suatu limas berbentuk segitiga siku-siku dengan panjang sisi 5 cm, 12 cm dan 13 cm Jika volume limas 160 cm, hitunglah tinggi limas tersebut! [tex] \\ [/tex]3) T.DEFG adalah limas segiempat beraturan dengan panjang DF = 12 cm, TD = 10 cm[tex] \\ [/tex]a. Gambarkan sketsa limas!b. Tentukan tinggi limas!c. Hitunglah volume limas! [tex] \\ [/tex]PembahasanNomor 1[tex]\small\boxed{\tt{ = \frac{1}{3} \times a \times t}}[/tex][tex] \sf\ = \frac{1}{3} \times (10.10) \times 12 [/tex] [tex] \sf= 4 \times 100 [/tex][tex] \sf = 400 \: {cm}^{3} [/tex][tex] \\ [/tex]Nomor 2[tex]\small\boxed{\tt{ Volume =\frac{1}{3} \times a \times t}}[/tex][tex] \sf\ 160 = \frac{1}{3} \times ( \frac{1}{2} (5.10.13) \times t[/tex] [tex] \sf\ 160 = \frac{1}{2} × 780 \times t[/tex] [tex] \sf 80 = 260 \times t [/tex][tex] \sf t = \frac{260}{80}[/tex][tex] 3,25\: {cm}^{3} [/tex][tex] \\ [/tex]Nomor 31) Tinggi limasDO = 1/2 ÷ DF= 1/2 ÷ 12= 6 cm= TO= √(TD² - OD²)= √(10² - 6²)= √(100 - 36)= √64= 8 cm[tex] \\ [/tex]2) Panjang sisi = DE = EF, Jadi :DF² = DE² + EF²12² = s² + s²144 = 2s²s² = 144 ÷ 2s² = 72s = √72s = √(2 × 36)s = 6√2 cm[tex] \\ [/tex]3) Volume limas= 1/3 × L alas × t= 1/3 × s² × t= 1/3 × (6√2)² × 8= 1/3 × 72 × 8= 24 × 8= 192 cm³[tex] \\ [/tex]➡ Detail jawabanKelas : 8Pelajaran : MatematikaKategori : Bangun RuangKata Kunci : LimasPendahulanLimas adalah bangun ruang tiga dimensi yang memiliki sisi alas dan sisi selimutVolume limas dapat dihitung menggunakan rumus sebagai berikut :[tex]\small\boxed{\tt{ \frac{1}{3} \times a \times t}}[/tex]=====================Luas permukaan limas dapat dihitung menggunakan rumus sebagai berikut :[tex]\small\boxed{\tt{Lalas + Lselimut}}[/tex]Soal[tex] \\ [/tex]1) Hitunglah volume limas segiempat beraturan dengan panjang rusuk alas 10 cm dan tinggi limas 12 cm! [tex] \\ [/tex]2) Alas suatu limas berbentuk segitiga siku-siku dengan panjang sisi 5 cm, 12 cm dan 13 cm Jika volume limas 160 cm, hitunglah tinggi limas tersebut! [tex] \\ [/tex]3) T.DEFG adalah limas segiempat beraturan dengan panjang DF = 12 cm, TD = 10 cm[tex] \\ [/tex]a. Gambarkan sketsa limas!b. Tentukan tinggi limas!c. Hitunglah volume limas! [tex] \\ [/tex]PembahasanNomor 1[tex]\small\boxed{\tt{ = \frac{1}{3} \times a \times t}}[/tex][tex] \sf\ = \frac{1}{3} \times (10.10) \times 12 [/tex] [tex] \sf= 4 \times 100 [/tex][tex] \sf = 400 \: {cm}^{3} [/tex][tex] \\ [/tex]Nomor 2[tex]\small\boxed{\tt{ Volume =\frac{1}{3} \times a \times t}}[/tex][tex] \sf\ 160 = \frac{1}{3} \times ( \frac{1}{2} (5.10.13) \times t[/tex] [tex] \sf\ 160 = \frac{1}{2} × 780 \times t[/tex] [tex] \sf 80 = 260 \times t [/tex][tex] \sf t = \frac{260}{80}[/tex][tex] 3,25\: {cm}^{3} [/tex][tex] \\ [/tex]Nomor 31) Tinggi limasDO = 1/2 ÷ DF= 1/2 ÷ 12= 6 cm= TO= √(TD² - OD²)= √(10² - 6²)= √(100 - 36)= √64= 8 cm[tex] \\ [/tex]2) Panjang sisi = DE = EF, Jadi :DF² = DE² + EF²12² = s² + s²144 = 2s²s² = 144 ÷ 2s² = 72s = √72s = √(2 × 36)s = 6√2 cm[tex] \\ [/tex]3) Volume limas= 1/3 × L alas × t= 1/3 × s² × t= 1/3 × (6√2)² × 8= 1/3 × 72 × 8= 24 × 8= 192 cm³[tex] \\ [/tex]➡ Detail jawabanKelas : 8Pelajaran : MatematikaKategori : Bangun RuangKata Kunci : Limas

Semoga dengan pertanyaan yang sudah terjawab oleh UceLLs dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 09 Aug 22