QUIZ GEOMETRI! (tapi padahal saya gatau jawabannya)Lingkaran biru dengan diameter

Berikut ini adalah pertanyaan dari unknown pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

QUIZ GEOMETRI! (tapi padahal saya gatau jawabannya)Lingkaran biru dengan diameter 2a cm (harusnya saya disitu nulis 2a cm tapi udh terlanjur -,-), cari luas lingkaran kuning!

note :

- lihat dengan imajinasi, belum tentu jari jari lingkaran biru = diameter lingkaran kuning

- ketiga titik dari lingkaran kuning saling menyinggung gadis biru itu.​
QUIZ GEOMETRI! (tapi padahal saya gatau jawabannya)Lingkaran biru dengan diameter 2a cm (harusnya saya disitu nulis 2a cm tapi udh terlanjur -,-), cari luas lingkaran kuning! note : - lihat dengan imajinasi, belum tentu jari jari lingkaran biru = diameter lingkaran kuning- ketiga titik dari lingkaran kuning saling menyinggung gadis biru itu.​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Maka ,luas lingkaran kuning adalah πa(3 - 2√2)

_______________

Pendahuluan

Luas lingkaran = π . r. r selain luas lingkaran kita guanka

Teorema phytagoras

C = √(A^2 + B^2)

Langkahnya mencari sisi dari segitiga dulu

Mencari jari jari lingkaran kuning dengan menggunakan teorema phytagoras dan lingkaran

Diketahui

Lingkaran biru dengan diameter 2√a cm. cari

luas lingkaran kuning!

note :

- lihat dengan imajinasi, belum tentu jari jari

lingkaran biru = diameter lingkaran kuning

- ketiga titik dari lingkaran kuning saling

menyinggung garis biru itu.

Ditanya

  • luas lingkaran kuning!

Jawab

  • = πa(3 - 2√2)

Penyelesaian

diameter besar = 2a maka jari jari besar = √a

OP = OQ = OR = jari jari lingkaran kecil = r

RS = jari jari besar = √a

Perhatikan segitiga OPS :

OS = √(OP^2 + PS^2)

=√( r^2 + r^2)

= √(2r^2)

OS = r√2

RS = RO + OS

√a = r + r√2

√a = r(1 + √2)

r = √a/(1 + √2)

Luas lingkaran kuning = π . r. r = π .(√a/(1 + √2))^2

= πa/(1 + 2√2 +2)

= πa/ (3 + 2√2)

=πa/(3 + 2√2) x (3 - 2√2)/(3 - 2√2)

= πa / 9 - 8 x ( 3 - 2√2)

= πa(3 - 2√2)

Kesimpulan

luas lingkaran kuning adalah πa(3 - 2√2)

________________

Detail Jawaban :

Materi : 8 SMP

Mapel : Matematika

Bab : Lingkaran

Kode Soal : 2

Maka ,luas lingkaran kuning adalah πa(3 - 2√2)_______________Pendahuluan Luas lingkaran = π . r. r selain luas lingkaran kita guanka Teorema phytagorasC = √(A^2 + B^2)Langkahnya mencari sisi dari segitiga duluMencari jari jari lingkaran kuning dengan menggunakan teorema phytagoras dan lingkaranDiketahui Lingkaran biru dengan diameter 2√a cm. cariluas lingkaran kuning!note :- lihat dengan imajinasi, belum tentu jari jarilingkaran biru = diameter lingkaran kuning- ketiga titik dari lingkaran kuning salingmenyinggung garis biru itu.Ditanya luas lingkaran kuning!Jawab = πa(3 - 2√2) Penyelesaian diameter besar = 2a maka jari jari besar = √aOP = OQ = OR = jari jari lingkaran kecil = rRS = jari jari besar = √aPerhatikan segitiga OPS :OS = √(OP^2 + PS^2) =√( r^2 + r^2) = √(2r^2)OS = r√2RS = RO + OS √a = r + r√2 √a = r(1 + √2) r = √a/(1 + √2)Luas lingkaran kuning = π . r. r = π .(√a/(1 + √2))^2= πa/(1 + 2√2 +2)= πa/ (3 + 2√2)=πa/(3 + 2√2) x (3 - 2√2)/(3 - 2√2)= πa / 9 - 8 x ( 3 - 2√2)= πa(3 - 2√2)Kesimpulan luas lingkaran kuning adalah πa(3 - 2√2)________________Detail Jawaban : Materi : 8 SMP Mapel : Matematika Bab : Lingkaran Kode Soal : 2

Semoga dengan pertanyaan yang sudah terjawab oleh DindaAuliaZahra dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 15 Jul 21