2sin³52°=...? mohon bantuannya​

Berikut ini adalah pertanyaan dari user28399592 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

2sin³52°=...?
mohon bantuannya​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawaban:

Input

2 sin^352(°)

Exact result

2 sin^352(π/180)

Decimal approximation

2.717077840378352237285401071488336915487379903282003866146... × 10^-619

Continued fraction

[0; 3680424554420385370952391207582968996729089663400515473986235, ...]

Alternative representations

2 sin^352(1 °) = 2 (1/csc(1 °))^352

2 sin^352(1 °) = 2 cos^352(-° + π/2)

2 sin^352(1 °) = 2 (-cos(1 ° + π/2))^352

Series representations

2 sin^352(1 °) = 2 ( sum_(k=0)^∞ ((-1)^k °^(1 + 2 k))/((1 + 2 k)!))^352

2 sin^352(1 °) = 2 ( sum_(k=0)^∞ ((-1)^k (1 ° - π/2)^(2 k))/((2 k)!))^352

2 sin^352(1 °) = 18347988927920572092886567162416695526372519913346248989900710715095383008707878464560148424881005492436992 ( sum_(k=0)^∞ (-1)^k J_(1 + 2 k)(°))^352

Integral representations

2 sin^352(1 °) = 2 °^352 ( integral_0^1 cos(° t) dt)^352

2 sin^352(1 °) = ( integral_(-i ∞ + γ)^(i ∞ + γ) ((°/2)^(1 - 2 s) Γ(s))/Γ(3/2 - s) ds)^352/(4586997231980143023221641790604173881593129978336562247475177678773845752176969616140037106220251373109248 π^176) for 0<γ<1

2 sin^352(1 °) = (°^352 ( integral_(-i ∞ + γ)^(i ∞ + γ) e^(-°^2/(4 s) + s)/s^(3/2) ds)^352)/(42081087212386988057927919063041029324402718422585390875986247224549857234376646576909332290220707609815863750849425741704155458001470430905022518165215046799641789369027556785533310063074581738170346013886251008 π^176) for γ>0

by:Ken saka¶

Jawaban:Input2 sin^352(°)Exact result2 sin^352(π/180)Decimal approximation2.717077840378352237285401071488336915487379903282003866146... × 10^-619Continued fraction[0; 3680424554420385370952391207582968996729089663400515473986235, ...]Alternative representations2 sin^352(1 °) = 2 (1/csc(1 °))^3522 sin^352(1 °) = 2 cos^352(-° + π/2)2 sin^352(1 °) = 2 (-cos(1 ° + π/2))^352Series representations2 sin^352(1 °) = 2 ( sum_(k=0)^∞ ((-1)^k °^(1 + 2 k))/((1 + 2 k)!))^3522 sin^352(1 °) = 2 ( sum_(k=0)^∞ ((-1)^k (1 ° - π/2)^(2 k))/((2 k)!))^3522 sin^352(1 °) = 18347988927920572092886567162416695526372519913346248989900710715095383008707878464560148424881005492436992 ( sum_(k=0)^∞ (-1)^k J_(1 + 2 k)(°))^352Integral representations2 sin^352(1 °) = 2 °^352 ( integral_0^1 cos(° t) dt)^3522 sin^352(1 °) = ( integral_(-i ∞ + γ)^(i ∞ + γ) ((°/2)^(1 - 2 s) Γ(s))/Γ(3/2 - s) ds)^352/(4586997231980143023221641790604173881593129978336562247475177678773845752176969616140037106220251373109248 π^176) for 0<γ<12 sin^352(1 °) = (°^352 ( integral_(-i ∞ + γ)^(i ∞ + γ) e^(-°^2/(4 s) + s)/s^(3/2) ds)^352)/(42081087212386988057927919063041029324402718422585390875986247224549857234376646576909332290220707609815863750849425741704155458001470430905022518165215046799641789369027556785533310063074581738170346013886251008 π^176) for γ>0by:Ken saka¶Jawaban:Input2 sin^352(°)Exact result2 sin^352(π/180)Decimal approximation2.717077840378352237285401071488336915487379903282003866146... × 10^-619Continued fraction[0; 3680424554420385370952391207582968996729089663400515473986235, ...]Alternative representations2 sin^352(1 °) = 2 (1/csc(1 °))^3522 sin^352(1 °) = 2 cos^352(-° + π/2)2 sin^352(1 °) = 2 (-cos(1 ° + π/2))^352Series representations2 sin^352(1 °) = 2 ( sum_(k=0)^∞ ((-1)^k °^(1 + 2 k))/((1 + 2 k)!))^3522 sin^352(1 °) = 2 ( sum_(k=0)^∞ ((-1)^k (1 ° - π/2)^(2 k))/((2 k)!))^3522 sin^352(1 °) = 18347988927920572092886567162416695526372519913346248989900710715095383008707878464560148424881005492436992 ( sum_(k=0)^∞ (-1)^k J_(1 + 2 k)(°))^352Integral representations2 sin^352(1 °) = 2 °^352 ( integral_0^1 cos(° t) dt)^3522 sin^352(1 °) = ( integral_(-i ∞ + γ)^(i ∞ + γ) ((°/2)^(1 - 2 s) Γ(s))/Γ(3/2 - s) ds)^352/(4586997231980143023221641790604173881593129978336562247475177678773845752176969616140037106220251373109248 π^176) for 0<γ<12 sin^352(1 °) = (°^352 ( integral_(-i ∞ + γ)^(i ∞ + γ) e^(-°^2/(4 s) + s)/s^(3/2) ds)^352)/(42081087212386988057927919063041029324402718422585390875986247224549857234376646576909332290220707609815863750849425741704155458001470430905022518165215046799641789369027556785533310063074581738170346013886251008 π^176) for γ>0by:Ken saka¶Jawaban:Input2 sin^352(°)Exact result2 sin^352(π/180)Decimal approximation2.717077840378352237285401071488336915487379903282003866146... × 10^-619Continued fraction[0; 3680424554420385370952391207582968996729089663400515473986235, ...]Alternative representations2 sin^352(1 °) = 2 (1/csc(1 °))^3522 sin^352(1 °) = 2 cos^352(-° + π/2)2 sin^352(1 °) = 2 (-cos(1 ° + π/2))^352Series representations2 sin^352(1 °) = 2 ( sum_(k=0)^∞ ((-1)^k °^(1 + 2 k))/((1 + 2 k)!))^3522 sin^352(1 °) = 2 ( sum_(k=0)^∞ ((-1)^k (1 ° - π/2)^(2 k))/((2 k)!))^3522 sin^352(1 °) = 18347988927920572092886567162416695526372519913346248989900710715095383008707878464560148424881005492436992 ( sum_(k=0)^∞ (-1)^k J_(1 + 2 k)(°))^352Integral representations2 sin^352(1 °) = 2 °^352 ( integral_0^1 cos(° t) dt)^3522 sin^352(1 °) = ( integral_(-i ∞ + γ)^(i ∞ + γ) ((°/2)^(1 - 2 s) Γ(s))/Γ(3/2 - s) ds)^352/(4586997231980143023221641790604173881593129978336562247475177678773845752176969616140037106220251373109248 π^176) for 0<γ<12 sin^352(1 °) = (°^352 ( integral_(-i ∞ + γ)^(i ∞ + γ) e^(-°^2/(4 s) + s)/s^(3/2) ds)^352)/(42081087212386988057927919063041029324402718422585390875986247224549857234376646576909332290220707609815863750849425741704155458001470430905022518165215046799641789369027556785533310063074581738170346013886251008 π^176) for γ>0by:Ken saka¶

Semoga dengan pertanyaan yang sudah terjawab oleh kensaka496 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Fri, 04 Nov 22