Tolong dong kak , minta bantuannya

Berikut ini adalah pertanyaan dari digaaurya123 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Tolong dong kak , minta bantuannya
Tolong dong kak , minta bantuannya

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

\large\text{$\begin{aligned}&f(x)=x\,,\ \ \forall\,x\in\mathbb{R}^{+}\\&\ \sf\ or\\&f(x) =\frac{1}{x}\,,\ \ \forall\,x\in\mathbb{R}^{+}\end{aligned}$}

Problem

Find all functions f: (0, \infty) \to (0, \infty) (so, f is a function from the positive real numbers to the positive real numbers) such that
\displaystyle\frac {\left( f(w) \right)^2 + \left( f(x) \right)^2}{f(y^2) + f(z^2) } = \frac {w^2 + x^2}{y^2 + z^2}
for all positive real numbers w,x,y,zsatisfyingwx = yz.

Solution

First, by letting (w,x,y,z) = (t,t,t,t)which satisfieswx=yz=t^2, we get:

\begin{aligned}\frac{\left(f(t)\right)^2+\left(f(t)\right)^2}{f\left(t^2\right)+f\left(t^2\right)}&=\frac{t^2+t^2}{t^2+t^2}\\\Rightarrow \frac{\cancel{2}\left(f(t)\right)^2}{\cancel{2}f\left(t^2\right)}&=1\\\therefore\ \left(f(t)\right)^2&=f\left(t^2\right)\end{aligned}

It can also be easily concluded that f(1) = 1.

Next, let (w,x,y,z) = \left(t,1,\sqrt{t},\sqrt{t}\right)so thatwx=yz=t.

\begin{aligned}&\frac{\left(f(t)\right)^2+\left(f(1)\right)^2}{f\left(\left(\sqrt{t}\right)^2\right)+f\left(\left(\sqrt{t}\right)^2\right)}=\frac{t^2+1^2}{\left(\sqrt{t}\right)^2+\left(\sqrt{t}\right)^2}\\&{\Rightarrow\ }\frac{\left(f(t)\right)^2+1}{\cancel{2}f(t)}=\frac{t^2+1}{\cancel{2}t}\\&{\Rightarrow\ }t\left(f(t)\right)^2+t=\left(t^2+1\right)f(t)\\&{\Rightarrow\ }t\left(f(t)\right)^2-\left(t^2+1\right)f(t)+t=0\end{aligned}

We get a quadratic equation. Its roots are f_1(t)andf_2(t) which satisfy:

\begin{aligned}\bullet\ &f_1(t)\cdot f_2(t)=\frac{t}{t}=1\\\bullet\ &f_1(t)+f_2(t)=\frac{t^2+1}{t}=t+\frac{1}{t}\end{aligned}

Hence,

\begin{aligned}&f_1(t)=t\,,\ f_2(t)=\frac{1}{t}\\&\therefore\ f(t)\in\left\{t\,,\ \frac{1}{t}\right\}\end{aligned}

We still need to prove that f(t)holds\forall\,t\in\mathbb{R}^{+}.

Prove

Let f(x)=x\ \ \forall\,x\in\mathbb{R}^{+}.
It’s obvious that f(x)=x is a solution based on the original equation.

Let f(x) = 1/x\ \ \forall\,x\in\mathbb{R}^{+}.

\begin{aligned}\frac{\left(f(w)\right)^2+\left(f(x)\right)^2}{f\left(y^2\right)+f\left(z^2\right)}&=\frac{\dfrac{1}{w^2}+\dfrac{1}{x^2}}{\dfrac{1}{y^2}+\dfrac{1}{z^2}}\\&=\frac{\ \dfrac{w^2+x^2}{w^2x^2}\ }{\dfrac{y^2+z^2}{y^2z^2}}\\&=\frac{w^2+x^2}{y^2+z^2}\cdot\frac{y^2z^2}{w^2x^2}\\&=\frac{w^2+x^2}{y^2+z^2}\cdot\frac{\cancel{(yz)^2}}{\cancel{(wx)^2}}\\\frac{\left(f(w)\right)^2+\left(f(x)\right)^2}{f\left(y^2\right)+f\left(z^2\right)}&=\frac{w^2+x^2}{y^2+z^2}\end{aligned}

Therefore, f(x) = 1/x\ \ \forall\,x\in\mathbb{R}^{+} is also a solution.

CONCLUSION

We have 2 solutions:
\boxed{\:\large\text{$\begin{aligned}&f(x)=x\,,\ \ \forall\,x\in\mathbb{R}^{+}\\&\ \sf\ or\\&f(x) =\frac{1}{x}\,,\ \ \forall\,x\in\mathbb{R}^{+}\end{aligned}$}\:}

\blacksquare

Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sat, 01 Oct 22