Berikut ini adalah pertanyaan dari ratifanaila02 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Kategori Soal : Matematika - Bangun Ruang
Kelas : IX (3 SMP)
Pembahasan :
Halo, saya akan menjawab dengan dua cara, yaitu dengan cara pendek untuk jawaban pastinya dan cara panjang untuk jawaban yang disertai penjelasan lengkap.
Jawaban dengan cara pendek
Diketahui volume sebuah kubus adalah V = 21952 cm³.
V = s . s . s
⇔ V = s³
⇔ s³ = 21952
⇔ s = ∛21952
⇔ s = 28
Jadi, panjang sisi kubus adalah s = 28 cm.
Luas permukaan kubus adalah
= 6 x luas bidang
= 6 x (s x s)
= 6 x s²
= 6 x 28²
= 6 x 784
= 4704
Jadi, luas permukaan kubus adalah L = 4704 cm².
Jawaban dengan cara panjang
Perhatikan gambar kubus ABCD.EFGH terlampir.
Kubus adalah bangun ruang yang semua sisi atau bidang berbentuk persegi.
Kubus ABCD.EFGH memiliki 6 buah bidang, yaitu : ABCD, ABFE, BCGF, CDHG, ADHE, dan EFGH.
Perpotongan dua buah bidang pada kubus disebut rusuk.
Kubus ABCD.EFGH memiliki 12 buah rusuk, yaitu : AB, BC, CD, AD, EF, FG, GH, EH, AE, BF, CG, dan DH.
Rusuk AB, BC, CD, dan AD disebut rusuk alas, rusuk AE, BF, CG, dan DH disebut rusuk tegak, dan rusuk EF, FG, GH, dan EH disebut rusuk atas.
Titik potong antara tiga buah rusuk pada kubus disebut titik sudut.
Kubus ABCD.EFGH memiliki 8 buah titik sudut,yaitu : A, B, C, D, E, F, G, dan H.
Diagonal bidang kubus adalah ruas garis yang menghubungkan dua titik sudut yang berhadapan pada setiap bidang. Setiap bidang pada kubus memiliki dua buah diagonal bidang.
Kubus ABCD.EFGH memiliki 12 buah diagonal bidang, yaitu : AC, BD, AF, BE, AH, DE, BG, CF, CH, DG, EG, dan FH.
Kita menggunakan rumus Phytagoras untuk menentukan panjang diagonal bidang.
Misalkan panjang diagonal bidang AC,
AB² + BC² = AC²
⇔ s² + s² = AC²
⇔ AC² = 2s²
⇔ AC = s√2
Jadi, panjang diagonal bidang AC adalah s√2.
Diagonal ruang kubus adalah ruas garis yang menghubungkan dua titik sudut yang berhadapan pada setiap ruang. Diagonal-diagonal itu sama panjang dan berpotongan pada satu titik.
Kubus ABCD.EFGH memiliki 4 buah diagonal ruang, yaitu : AG, BH, CE, dan DF.
Kita menggunakan rumus Phytagoras untuk menentukan panjang diagonal ruang kubus.
Misalkan panjang diagonal ruang kubus AG,
AB² + BC² + CG² = AG²
⇔ s² + s² + s² = AG²
⇔ AG² = 3s²
⇔ AG = s√3
Jadi, panjang diagonal ruang kubus adalah s√3.
Bidang diagonal kubus adalah bidang yang dibatasi oleh dua rusuk dan dua diagonal bidang.
Kubus ABCD.EFGH memiliki 6 buah bidang diagonal, yaitu : ABGH, CDEF, ADGF, BCHE, ACGE, dan BDHF.
Bidang yang sejajar dengan bidang gambar dinamakan bidang frontal dan bidang yang tegak lurus dengan bidang gambar dinamakan bidang ortogonal.
Kubus ABCD.EFGH memiliki 1 buah bidang frontal, yaitu : EFGH serta memiliki 4 buah bidang orthogonal, yaitu : ADHE, BCGF, ABFE, dan CDHG.
Diketahui sisi kubus = s.
Jumlah panjang rusuk balok atau panjang kerangka balok adalah
n = 12 . s
Luas permukaan kubus adalah
L = 6 . (s . s)
= 6 . s²
Volume kubus adalah
V = s . s . s
= s³
Jadikan jawaban tercerdas yaa
Semangat Belajar!
Semoga dengan pertanyaan yang sudah terjawab oleh atharwibowo07 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Thu, 03 Jun 21