Berikut ini adalah pertanyaan dari NovitaAnggiS pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama
4. Sederhanakan operasi berikut ini. Tuliskan jawabanmu dalam pangkat.a. 3^7×3^2/3^3
b. 5^5/5^2×5^3
c. {(1/t)^7/(1/t)^3} × {(1/t)^3/(1/t)^2)}
d. 3w^4/w^2 × 5w^3
Tolong bantuannya dong.. butuh nih..
b. 5^5/5^2×5^3
c. {(1/t)^7/(1/t)^3} × {(1/t)^3/(1/t)^2)}
d. 3w^4/w^2 × 5w^3
Tolong bantuannya dong.. butuh nih..
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Kelas : IX SMP
Pelajaran : Matematika
Kategori : Perpangkatan dan Bentuk Akar
Kata kunci : sederhanakan, operasi, pangkat
Penjelasan :
Sifat-sifat Eksponen (Perpangkatan)
![a^{0} = 1 \\ \\ a^{m} \times a^{n} = a^{m + n} \\ \\ \frac{ a^{m} }{ a^{n} } = a^{m - n} a^{0} = 1 \\ \\ a^{m} \times a^{n} = a^{m + n} \\ \\ \frac{ a^{m} }{ a^{n} } = a^{m - n}](https://tex.z-dn.net/?f=%20a%5E%7B0%7D%20%3D%201%20%5C%5C%20%20%5C%5C%20%20a%5E%7Bm%7D%20%5Ctimes%20a%5E%7Bn%7D%20%3D%20a%5E%7Bm%20%2B%20n%7D%20%5C%5C%20%5C%5C%20%20%5Cfrac%7B%20a%5E%7Bm%7D%20%7D%7B%20a%5E%7Bn%7D%20%7D%20%3D%20%20a%5E%7Bm%20-%20n%7D)
![$\begin {align} \ a) ~~ \frac{ 3^{7} \times 3^{2} }{ 3^{3}} & = 3^{(7 + 2 - 3)} \\ & = 3^{6} \end{align} $\begin {align} \ a) ~~ \frac{ 3^{7} \times 3^{2} }{ 3^{3}} & = 3^{(7 + 2 - 3)} \\ & = 3^{6} \end{align}](https://tex.z-dn.net/?f=%24%5Cbegin%20%7Balign%7D%20%5C%20a%29%20~~%20%5Cfrac%7B%203%5E%7B7%7D%20%5Ctimes%203%5E%7B2%7D%20%7D%7B%203%5E%7B3%7D%7D%20%26%20%3D%20%203%5E%7B%287%20%2B%202%20-%203%29%7D%20%5C%5C%20%26%20%3D%20%203%5E%7B6%7D%20%5Cend%7Balign%7D)
![$\begin{align} \ b) ~ ~ \frac{ 5^{5}}{ 5^{2} \times 5^{3} } & = \frac{ 5^{5} }{ 5^{(2 + 3)} } \\& = \frac{ 5^{5} }{ 5^{5} } \\& = 5^{(5 - 5)} \\ & = 5^{0} \\& = 1 \end{align} $\begin{align} \ b) ~ ~ \frac{ 5^{5}}{ 5^{2} \times 5^{3} } & = \frac{ 5^{5} }{ 5^{(2 + 3)} } \\& = \frac{ 5^{5} }{ 5^{5} } \\& = 5^{(5 - 5)} \\ & = 5^{0} \\& = 1 \end{align}](https://tex.z-dn.net/?f=%24%5Cbegin%7Balign%7D%20%5C%20b%29%20~%20~%20%5Cfrac%7B%205%5E%7B5%7D%7D%7B%205%5E%7B2%7D%20%5Ctimes%205%5E%7B3%7D%20%7D%20%26%20%3D%20%20%5Cfrac%7B%205%5E%7B5%7D%20%7D%7B%205%5E%7B%282%20%2B%203%29%7D%20%7D%20%5C%5C%26%20%3D%20%20%5Cfrac%7B%205%5E%7B5%7D%20%7D%7B%205%5E%7B5%7D%20%7D%20%5C%5C%26%20%3D%20%205%5E%7B%285%20-%205%29%7D%20%5C%5C%20%26%20%3D%205%5E%7B0%7D%20%5C%5C%26%20%3D%201%20%5Cend%7Balign%7D)
![$\begin {align} \ c) ~ ~ \frac{ ( \frac{1}{t} )^{7} }{ ( \frac{1}{t} )^{3} } \times \frac{ ( \frac{1}{t} )^{3} }{ ( \frac{1}{t} )^{2} } & = ( \frac{1}{t} )^{7-3} \times ( \frac{1}{t} )^{3-2} \\ & = ( \frac{1}{t} )^{4} \times ( \frac{1}{t} )^{1} \\ & = ( \frac{1}{t} )^{4 + 1} \\ & = ( \frac{1}{t} )^{5} \end {align} $\begin {align} \ c) ~ ~ \frac{ ( \frac{1}{t} )^{7} }{ ( \frac{1}{t} )^{3} } \times \frac{ ( \frac{1}{t} )^{3} }{ ( \frac{1}{t} )^{2} } & = ( \frac{1}{t} )^{7-3} \times ( \frac{1}{t} )^{3-2} \\ & = ( \frac{1}{t} )^{4} \times ( \frac{1}{t} )^{1} \\ & = ( \frac{1}{t} )^{4 + 1} \\ & = ( \frac{1}{t} )^{5} \end {align}](https://tex.z-dn.net/?f=%24%5Cbegin%20%7Balign%7D%20%5C%20c%29%20~%20~%20%5Cfrac%7B%20%28%20%5Cfrac%7B1%7D%7Bt%7D%20%29%5E%7B7%7D%20%20%7D%7B%20%28%20%5Cfrac%7B1%7D%7Bt%7D%20%29%5E%7B3%7D%20%7D%20%5Ctimes%20%5Cfrac%7B%20%28%20%5Cfrac%7B1%7D%7Bt%7D%20%29%5E%7B3%7D%20%20%7D%7B%20%28%20%5Cfrac%7B1%7D%7Bt%7D%20%29%5E%7B2%7D%20%7D%20%26%20%3D%20%28%20%5Cfrac%7B1%7D%7Bt%7D%20%29%5E%7B7-3%7D%20%5Ctimes%20%28%20%5Cfrac%7B1%7D%7Bt%7D%20%29%5E%7B3-2%7D%20%20%20%5C%5C%20%26%20%3D%20%28%20%5Cfrac%7B1%7D%7Bt%7D%20%29%5E%7B4%7D%20%5Ctimes%20%28%20%5Cfrac%7B1%7D%7Bt%7D%20%29%5E%7B1%7D%20%5C%5C%20%26%20%3D%20%28%20%5Cfrac%7B1%7D%7Bt%7D%20%29%5E%7B4%20%2B%201%7D%20%5C%5C%20%26%20%3D%20%28%20%5Cfrac%7B1%7D%7Bt%7D%20%29%5E%7B5%7D%20%20%20%20%5Cend%20%7Balign%7D)
![$\begin{align} \ d) ~ ~ \frac{ 3w^{4} }{ w^{2}} \times 5w^{3} & = 3 \times 5 \times w^{(4 - 2 + 3)} \\ & = 15w^{5} \end{align} $\begin{align} \ d) ~ ~ \frac{ 3w^{4} }{ w^{2}} \times 5w^{3} & = 3 \times 5 \times w^{(4 - 2 + 3)} \\ & = 15w^{5} \end{align}](https://tex.z-dn.net/?f=%24%5Cbegin%7Balign%7D%20%5C%20d%29%20~%20~%20%5Cfrac%7B%203w%5E%7B4%7D%20%7D%7B%20w%5E%7B2%7D%7D%20%5Ctimes%20%205w%5E%7B3%7D%20%26%20%3D%203%20%5Ctimes%205%20%5Ctimes%20w%5E%7B%284%20-%202%20%2B%203%29%7D%20%5C%5C%20%26%20%3D%2015w%5E%7B5%7D%20%5Cend%7Balign%7D)
Semoga membantu![Kelas : IX SMPPelajaran : MatematikaKategori : Perpangkatan dan Bentuk AkarKata kunci : sederhanakan, operasi, pangkatPenjelasan : Sifat-sifat Eksponen (Perpangkatan)[tex] a^{0} = 1 \\ \\ a^{m} \times a^{n} = a^{m + n} \\ \\ \frac{ a^{m} }{ a^{n} } = a^{m - n}[/tex][tex]$\begin {align} \ a) ~~ \frac{ 3^{7} \times 3^{2} }{ 3^{3}} & = 3^{(7 + 2 - 3)} \\ & = 3^{6} \end{align}[/tex][tex]$\begin{align} \ b) ~ ~ \frac{ 5^{5}}{ 5^{2} \times 5^{3} } & = \frac{ 5^{5} }{ 5^{(2 + 3)} } \\& = \frac{ 5^{5} }{ 5^{5} } \\& = 5^{(5 - 5)} \\ & = 5^{0} \\& = 1 \end{align}[/tex][tex]$\begin {align} \ c) ~ ~ \frac{ ( \frac{1}{t} )^{7} }{ ( \frac{1}{t} )^{3} } \times \frac{ ( \frac{1}{t} )^{3} }{ ( \frac{1}{t} )^{2} } & = ( \frac{1}{t} )^{7-3} \times ( \frac{1}{t} )^{3-2} \\ & = ( \frac{1}{t} )^{4} \times ( \frac{1}{t} )^{1} \\ & = ( \frac{1}{t} )^{4 + 1} \\ & = ( \frac{1}{t} )^{5} \end {align}[/tex][tex]$\begin{align} \ d) ~ ~ \frac{ 3w^{4} }{ w^{2}} \times 5w^{3} & = 3 \times 5 \times w^{(4 - 2 + 3)} \\ & = 15w^{5} \end{align}[/tex]Semoga membantu](https://id-static.z-dn.net/files/d4d/a38429c69cd66dcfd4c58946e3c1704a.jpg)
![Kelas : IX SMPPelajaran : MatematikaKategori : Perpangkatan dan Bentuk AkarKata kunci : sederhanakan, operasi, pangkatPenjelasan : Sifat-sifat Eksponen (Perpangkatan)[tex] a^{0} = 1 \\ \\ a^{m} \times a^{n} = a^{m + n} \\ \\ \frac{ a^{m} }{ a^{n} } = a^{m - n}[/tex][tex]$\begin {align} \ a) ~~ \frac{ 3^{7} \times 3^{2} }{ 3^{3}} & = 3^{(7 + 2 - 3)} \\ & = 3^{6} \end{align}[/tex][tex]$\begin{align} \ b) ~ ~ \frac{ 5^{5}}{ 5^{2} \times 5^{3} } & = \frac{ 5^{5} }{ 5^{(2 + 3)} } \\& = \frac{ 5^{5} }{ 5^{5} } \\& = 5^{(5 - 5)} \\ & = 5^{0} \\& = 1 \end{align}[/tex][tex]$\begin {align} \ c) ~ ~ \frac{ ( \frac{1}{t} )^{7} }{ ( \frac{1}{t} )^{3} } \times \frac{ ( \frac{1}{t} )^{3} }{ ( \frac{1}{t} )^{2} } & = ( \frac{1}{t} )^{7-3} \times ( \frac{1}{t} )^{3-2} \\ & = ( \frac{1}{t} )^{4} \times ( \frac{1}{t} )^{1} \\ & = ( \frac{1}{t} )^{4 + 1} \\ & = ( \frac{1}{t} )^{5} \end {align}[/tex][tex]$\begin{align} \ d) ~ ~ \frac{ 3w^{4} }{ w^{2}} \times 5w^{3} & = 3 \times 5 \times w^{(4 - 2 + 3)} \\ & = 15w^{5} \end{align}[/tex]Semoga membantu](https://id-static.z-dn.net/files/dc7/754c4f866121a77bc2aff26727db635e.jpg)
![Kelas : IX SMPPelajaran : MatematikaKategori : Perpangkatan dan Bentuk AkarKata kunci : sederhanakan, operasi, pangkatPenjelasan : Sifat-sifat Eksponen (Perpangkatan)[tex] a^{0} = 1 \\ \\ a^{m} \times a^{n} = a^{m + n} \\ \\ \frac{ a^{m} }{ a^{n} } = a^{m - n}[/tex][tex]$\begin {align} \ a) ~~ \frac{ 3^{7} \times 3^{2} }{ 3^{3}} & = 3^{(7 + 2 - 3)} \\ & = 3^{6} \end{align}[/tex][tex]$\begin{align} \ b) ~ ~ \frac{ 5^{5}}{ 5^{2} \times 5^{3} } & = \frac{ 5^{5} }{ 5^{(2 + 3)} } \\& = \frac{ 5^{5} }{ 5^{5} } \\& = 5^{(5 - 5)} \\ & = 5^{0} \\& = 1 \end{align}[/tex][tex]$\begin {align} \ c) ~ ~ \frac{ ( \frac{1}{t} )^{7} }{ ( \frac{1}{t} )^{3} } \times \frac{ ( \frac{1}{t} )^{3} }{ ( \frac{1}{t} )^{2} } & = ( \frac{1}{t} )^{7-3} \times ( \frac{1}{t} )^{3-2} \\ & = ( \frac{1}{t} )^{4} \times ( \frac{1}{t} )^{1} \\ & = ( \frac{1}{t} )^{4 + 1} \\ & = ( \frac{1}{t} )^{5} \end {align}[/tex][tex]$\begin{align} \ d) ~ ~ \frac{ 3w^{4} }{ w^{2}} \times 5w^{3} & = 3 \times 5 \times w^{(4 - 2 + 3)} \\ & = 15w^{5} \end{align}[/tex]Semoga membantu](https://id-static.z-dn.net/files/df9/d95fc8493d3b69facd7e73543ce9e48a.jpg)
Pelajaran : Matematika
Kategori : Perpangkatan dan Bentuk Akar
Kata kunci : sederhanakan, operasi, pangkat
Penjelasan :
Sifat-sifat Eksponen (Perpangkatan)
Semoga membantu
![Kelas : IX SMPPelajaran : MatematikaKategori : Perpangkatan dan Bentuk AkarKata kunci : sederhanakan, operasi, pangkatPenjelasan : Sifat-sifat Eksponen (Perpangkatan)[tex] a^{0} = 1 \\ \\ a^{m} \times a^{n} = a^{m + n} \\ \\ \frac{ a^{m} }{ a^{n} } = a^{m - n}[/tex][tex]$\begin {align} \ a) ~~ \frac{ 3^{7} \times 3^{2} }{ 3^{3}} & = 3^{(7 + 2 - 3)} \\ & = 3^{6} \end{align}[/tex][tex]$\begin{align} \ b) ~ ~ \frac{ 5^{5}}{ 5^{2} \times 5^{3} } & = \frac{ 5^{5} }{ 5^{(2 + 3)} } \\& = \frac{ 5^{5} }{ 5^{5} } \\& = 5^{(5 - 5)} \\ & = 5^{0} \\& = 1 \end{align}[/tex][tex]$\begin {align} \ c) ~ ~ \frac{ ( \frac{1}{t} )^{7} }{ ( \frac{1}{t} )^{3} } \times \frac{ ( \frac{1}{t} )^{3} }{ ( \frac{1}{t} )^{2} } & = ( \frac{1}{t} )^{7-3} \times ( \frac{1}{t} )^{3-2} \\ & = ( \frac{1}{t} )^{4} \times ( \frac{1}{t} )^{1} \\ & = ( \frac{1}{t} )^{4 + 1} \\ & = ( \frac{1}{t} )^{5} \end {align}[/tex][tex]$\begin{align} \ d) ~ ~ \frac{ 3w^{4} }{ w^{2}} \times 5w^{3} & = 3 \times 5 \times w^{(4 - 2 + 3)} \\ & = 15w^{5} \end{align}[/tex]Semoga membantu](https://id-static.z-dn.net/files/d4d/a38429c69cd66dcfd4c58946e3c1704a.jpg)
![Kelas : IX SMPPelajaran : MatematikaKategori : Perpangkatan dan Bentuk AkarKata kunci : sederhanakan, operasi, pangkatPenjelasan : Sifat-sifat Eksponen (Perpangkatan)[tex] a^{0} = 1 \\ \\ a^{m} \times a^{n} = a^{m + n} \\ \\ \frac{ a^{m} }{ a^{n} } = a^{m - n}[/tex][tex]$\begin {align} \ a) ~~ \frac{ 3^{7} \times 3^{2} }{ 3^{3}} & = 3^{(7 + 2 - 3)} \\ & = 3^{6} \end{align}[/tex][tex]$\begin{align} \ b) ~ ~ \frac{ 5^{5}}{ 5^{2} \times 5^{3} } & = \frac{ 5^{5} }{ 5^{(2 + 3)} } \\& = \frac{ 5^{5} }{ 5^{5} } \\& = 5^{(5 - 5)} \\ & = 5^{0} \\& = 1 \end{align}[/tex][tex]$\begin {align} \ c) ~ ~ \frac{ ( \frac{1}{t} )^{7} }{ ( \frac{1}{t} )^{3} } \times \frac{ ( \frac{1}{t} )^{3} }{ ( \frac{1}{t} )^{2} } & = ( \frac{1}{t} )^{7-3} \times ( \frac{1}{t} )^{3-2} \\ & = ( \frac{1}{t} )^{4} \times ( \frac{1}{t} )^{1} \\ & = ( \frac{1}{t} )^{4 + 1} \\ & = ( \frac{1}{t} )^{5} \end {align}[/tex][tex]$\begin{align} \ d) ~ ~ \frac{ 3w^{4} }{ w^{2}} \times 5w^{3} & = 3 \times 5 \times w^{(4 - 2 + 3)} \\ & = 15w^{5} \end{align}[/tex]Semoga membantu](https://id-static.z-dn.net/files/dc7/754c4f866121a77bc2aff26727db635e.jpg)
![Kelas : IX SMPPelajaran : MatematikaKategori : Perpangkatan dan Bentuk AkarKata kunci : sederhanakan, operasi, pangkatPenjelasan : Sifat-sifat Eksponen (Perpangkatan)[tex] a^{0} = 1 \\ \\ a^{m} \times a^{n} = a^{m + n} \\ \\ \frac{ a^{m} }{ a^{n} } = a^{m - n}[/tex][tex]$\begin {align} \ a) ~~ \frac{ 3^{7} \times 3^{2} }{ 3^{3}} & = 3^{(7 + 2 - 3)} \\ & = 3^{6} \end{align}[/tex][tex]$\begin{align} \ b) ~ ~ \frac{ 5^{5}}{ 5^{2} \times 5^{3} } & = \frac{ 5^{5} }{ 5^{(2 + 3)} } \\& = \frac{ 5^{5} }{ 5^{5} } \\& = 5^{(5 - 5)} \\ & = 5^{0} \\& = 1 \end{align}[/tex][tex]$\begin {align} \ c) ~ ~ \frac{ ( \frac{1}{t} )^{7} }{ ( \frac{1}{t} )^{3} } \times \frac{ ( \frac{1}{t} )^{3} }{ ( \frac{1}{t} )^{2} } & = ( \frac{1}{t} )^{7-3} \times ( \frac{1}{t} )^{3-2} \\ & = ( \frac{1}{t} )^{4} \times ( \frac{1}{t} )^{1} \\ & = ( \frac{1}{t} )^{4 + 1} \\ & = ( \frac{1}{t} )^{5} \end {align}[/tex][tex]$\begin{align} \ d) ~ ~ \frac{ 3w^{4} }{ w^{2}} \times 5w^{3} & = 3 \times 5 \times w^{(4 - 2 + 3)} \\ & = 15w^{5} \end{align}[/tex]Semoga membantu](https://id-static.z-dn.net/files/df9/d95fc8493d3b69facd7e73543ce9e48a.jpg)
Semoga dengan pertanyaan yang sudah terjawab oleh Ridafahmi dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Wed, 11 Nov 15