jumlah korespondensi satu satu untuk himpunan x =(2,4,6,8,10,12) dengan himpunan

Berikut ini adalah pertanyaan dari raffaadhitya446 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

jumlah korespondensi satu satu untuk himpunan x =(2,4,6,8,10,12) dengan himpunan y=(1,2,3,4,5,6) adalah​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawab:

Jika melihat dari syarata korespondensi satu-satu bahwa banyak anggota domain dan kodomain harus sama maka bisa dirumuskan sebagai berikut : Jika n (A) = n(B) = n, maka banyaknya korespondensi satu-satu yang mungkin adalah : n x (n – 1) x (n – 2) x … x 2 x 1.

Contoh Soal 1 :

Diketahui himpunan A = {2, 4, 6, 8, 10, 12} dan himpunan B = {1, 3, 5, 7, 9, 11}. Maka tentukanlah berapa banyak kemungkinan korespondensi satu satu yang dapat dibentuk dari himpunan A ke himpunan B ?

Penyelesaian Soal :

Banyak anggota himpunan A dan Himpunan B adalah sama, yaitu 6 maka n = 6. Oleh karena itu, banyak kemungkinan korespondensi satu satu yang dapat dibentuk adalah sebagai berikut :

6 x 5 x 4 x 3 x 2x 1 = 720

Maka bisa disimpulkan bahwa terdapat 720 korespondensi satu satu yang dapat dibentuk dari himpunan A ke himpunan B.

Contoh Soal 2 :

Berapakan banyaknya jumlah korespondensi satu-satu yang dapat dibentuk dari himpunan C = (huruf vokal) dan juga D = (bilangan prima yang jumlahnya kurang dari 13) ?

Penyelesaian Soal :

Diketahui :       C = Huruf Vokal = a, i, u, e, o

D = Bilangan Prima yang Kurang dari 13 = 2, 3, 5, 7, 11

Karena n (C) dan n (D) = 5 maka untuk jumlah korespondensi satu-satu antara himpunan C dengan D adalah sebagai berikut : 5? = 5 x 4 x 3 x 2 x 1 = 120

Penjelasan dengan langkah-langkah:

moga paham

Semoga dengan pertanyaan yang sudah terjawab oleh wisnumarshal74 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sat, 05 Mar 22