Berikut ini adalah pertanyaan dari Hafier pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Jawaban:
MAKALAH PERSAMAAN GARIS LURUS Disusun untuk melengkapi tugas kelompok Geometri Analitik Ruang Kelas GAR B Kelompok 2 Oleh Nur Rovita Sani (120210101044) Yuli Nur Azizah (120210101077) Dyas Arintya P (120210101086) Silvia Umala (120210101114) Afilatul Laili (120210101115) PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER TAHUN AJARAN 2013 – 2014 2
3. PERSAMAAN GARIS LURUS Pada gambar di bawah ini adalah garis yang melalui titik P0(x0,y0,z0) dan sejajar dengan vektor v = ai+bj+ck. Untuk menentukan persamaan garis l, diambil sembarang titik P(x,y,z) pada Z P l P0 r ro v O Y X Garis l, maka v dan = t v dengan t bilangan real. Jika vektor-vektor posisi titik P0 dan P terhadap 0 adalah r0 = <x,y,z>, maka P0P = r - r0 dan karena = t v maka r - r0 = t v r = r0 + t v Karena r adalah vektor posisi sebarang titik P pada garis l dan memenuhi persamaan terakhir, maka setiap titik P pada garis lakan memenuhi persamaan tersebut. Dengan kata lain, persamaan garis l yang melalui P0(x0,y0,z0) dan sejajar vektor v = <a,b,c> adalah r = r0 + tv Atau persamaan vektor garis l <x,y,z>.= < x0,y0,z0> +t <a,b,c> <x,y,z>.= < x0 + ta,y0 + tb,z0 +tc> x=x0 + ta;y=y0+ tb;z=z0 +tc Persamaan parametrik (kanonik) dari garis l. 3
4. Apabila parameter t dari persamaan parametrik ini dihilangkan, maka diperoleh Disebut persamaan simetrik dari garis l dengan bilangan arah a,b,c dan melalui titik (x0,y0,z0). Persamaan parametrik itu terdiri dari dua persamaan, yaitu Contoh 1 Tentukan persamaan-persamaan vektor, parametrik dan simetrik untuk garis yang melalui titik a(3,-2,4) dan b(5,6,-2) Jawab : Sebuah vektor yang sejajar dengan garis ab adalah v = <2,8,-6> dipilih r0 = = <5-3,6-(-2),-2-4> = = <3,-2,4> dan r sebarang vektor posisi titik (x,y,z), maka persamaan vektor garis AB adalah r= r0 + t v <x,y,z>= < 3,-2,4> +t <2,8,-6> Persamaan parametriknya adalah x=3+2t , y=-2+8t , z=4-6t Sedangkan persamaan simetriknya adalah 4
5. Contoh 2 Tentukan persamaan simetrik dari garis potong bidang-bidang 2x – y-5z=-14 dan 4x+5y+4z=28. Jawab: Dari dua persamaan bidang kita hilangkan x, dan diperoleh y+2z=8. Jika dari dua persamaan bidang itu kita hilangkan y, maka diperoleh x= z -3. Dari dua persamaan ini dapat disusun persamaan simetriknya yaitu: Hasil ini bukanlah satu-satunya persamaan dari garis potong kedua bidang itu.misalkan, jika yang dihilangkan x dan z mungkin akan memperoleh persamaan yang berbeda, namun bilangan arahnya akan sama dengan k<3,-4,2> dengan k suatu bilangan real. Suatu penyelesaian lain didasarkan pada kenyataaan bahwa garis potong dua bidang tersebut akan tegak lurus pada vektor-vektor normalnya. Misalkan u=<2,-1,-5> adalah vektor normal bidang pertama dan v=<4,5,4> adalah vektor normal bidang kedua. Misalkan pula w = u x v, maka w= =21i-28j+14k Garis potong dua bidang itu sejajar dengan vector w ini selanjutnya dipilih suatu titik pada garis potong itu, misalkan (3,0,4) maka persamaan simetrik garis potong itu adalah 5
Semoga dengan pertanyaan yang sudah terjawab oleh halomoansitumoran dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Mon, 14 Feb 22