Kuis 100÷2 Points dari Stingray:[Kalo lagi pusing mending gk usah

Berikut ini adalah pertanyaan dari Stingray pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Kuis 100÷2 Points dari Stingray:[Kalo lagi pusing mending gk usah jawab]Jika π = 22/7 maka....



Buktikan luas yg Diarsir Adalah -465½ + 350√2 cm²


Ngasal = Report​
Kuis 100÷2 Points dari Stingray:[Kalo lagi pusing mending gk usah jawab]Jika π = 22/7 maka....Buktikan luas yg Diarsir Adalah -465½ + 350√2 cm²Ngasal = Report​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawab:

Luas yang diarsir [terbukti] =

350√2 - 465½ cm²

Penjelasan dengan langkah-langkah:

Lihat gambar untuk nama-nama garis:

Luas (i) / merah =

Luas persegi luar - lingkaran luar =

(ab)² - (ab)²π/4

7² - π7²/4 =

49 - 49π/4 cm²

Luas (ii) / kuning =

Cari eh

oe = ½ab = ½·7 = 7/2

maka

eh² = 2(oe)² = 2·(7/2)² = 49/2

eh = √49/√2; eh = (7√2)/2 cm

maka

ij = (ab-eh)/2

ij = (7-(7√2)/2)/2, ij = (14-7√2)/4 cm

jk = (14-7√2)/4 · √2 = [7(2-√2)]/(2√2) = 14√2-14/4 = 7(√2-1)/2 cm

luas (ii) = 2·((lingkaran-kotak) + (tembereng))

= 2·((π(ij)² - (jk)²) + (½π(jk)² - (jk)²)

= 2·((π((14-7√2)/4)² - (7(√2-1)/2)²) + (½π(7(√2-1)/2)² - (7(√2-1)/2)²))

= 2·((π(294-196√2/16) - (49(3-2√2)/4) + (¼π(49(3-2√2)/2) - (49(3-2√2)/4)))

= 2·((π(294-196√2/16) - (49(3-2√2)/4) + (¼π(49(3-2√2)/2) - (49(3-2√2)/4))

= 2·((49π(3-2√2)/8) - (49(3-2√2)/4) + (49π(3-2√2)/8) - (49(3-2√2)/4))

= 2·((49π(3-2√2)/4) - (49(3-2√2)/2))

= (49π(3-2√2)/2) - 49(3-2√2)

= (49π(3-2√2)/2) -147+98√2 cm²

Luas (iii) / hijau =

(eh)² - [(½π(eh)² - (eh)²] =

((7√2)/2)² - [(½π((7√2)/2)² - ((7√2)/2)²] =

49/2 - (49π/4 - 49/2) =

49 - 49π/4 cm²

Luas (iv) / biru =

oL = jk = 7(√2-1)/2 cm

mn = 7(√2-1)/2 · √2 = 7(√2-1)/√2 = 7√2(√2-1)/2 =

mn = (14-7√2)/2 cm

maka

Luas (iv) = π(oL)² - (mn²) = π(7(√2-1)/2)² - ((14-7√2)/2)² =

(49π(3-2√2)/4) - (49(3-2√2)/2) cm²

Luas (v) / ungu =

om = (½mn)√2

om = (½(14-7√2)/2)√2

om = (14-7√2)/4 · √2 = [7(2-√2)]/(2√2) = 14√2-14/4 = 7(√2-1)/2 cm

op = mn - om

op = (14-7√2)/2 - 7(√2-1)/2 = 21-14√2/2 cm

Luas (v) = ½π(mn)² - (mn)² - π(op)²

Luas (v) = ½π((14-7√2)/2)² - ((14-7√2)/2)² - π(21-14√2/2

Luas (v) = ½π(49(3-2√2)/2) - (49(3-2√2)/2) - π(833-588√2/4)

Luas (v) = (49π(3-2√2)/4)-(49(3-2√2)/2)-(833-588√2/4)

Luas (v) = 49π(5√2-7)/2 - 49(3-2√2)/2 cm²

Luas total =

(i) + (ii) + (iii) + (iv) + (v) =

49-49\cdot \frac{\pi }{4}+49\pi \frac{3-2\sqrt{2}}{2}-147+98\sqrt{2}+49-49\cdot \frac{\pi }{4}+49\pi \frac{3-2\sqrt{2}}{4}-49\cdot \frac{3-2\sqrt{2}}{2}+49\pi \frac{5\sqrt{2}-7}{2}-49\cdot \frac{3-2\sqrt{2}}{2} =\\\\49\pi \frac{3-2\sqrt{2}}{2}-49\cdot \frac{3-2\sqrt{2}}{2}-49\cdot \frac{3-2\sqrt{2}}{2}-49\cdot \frac{\pi }{4}-49\cdot \frac{\pi }{4}+49\pi \frac{3-2\sqrt{2}}{4}+49\pi \frac{5\sqrt{2}-7}{2}+49-147+98\sqrt{2}+49 =

49\pi \frac{3-2\sqrt{2}}{2}-98\cdot \frac{3-2\sqrt{2}}{2}-98\cdot \frac{\pi }{4}+49\pi \frac{3-2\sqrt{2}}{4}+49\pi \frac{5\sqrt{2}-7}{2}+49-147+98\sqrt{2}+49

maka

\frac{49\pi \left(3-2\sqrt{2}\right)}{2}-49\left(3-2\sqrt{2}\right)-\frac{49\pi }{2}+\frac{49\pi \left(3-2\sqrt{2}\right)}{4}+\frac{49\pi \left(5\sqrt{2}-7\right)}{2}+49-147+98\sqrt{2}+49 =\\\\-\frac{49\pi }{2}+\frac{49\pi \left(3-2\sqrt{2}\right)}{2}+\frac{49\pi \left(3-2\sqrt{2}\right)}{4}+\frac{49\pi \left(5\sqrt{2}-7\right)}{2}-49\left(3-2\sqrt{2}\right)+49-147+98\sqrt{2}+49

sederhanakan!

\frac{49\pi \left(3-2\sqrt{2}\right)+49\pi \left(5\sqrt{2}-7\right)-49\pi }{2}+\frac{49\pi \left(3-2\sqrt{2}\right)}{4}-49\left(3-2\sqrt{2}\right)+49-147+98\sqrt{2}+49 =\\\\\frac{147\sqrt{2}\pi -245\pi }{2}+\frac{49\pi \left(3-2\sqrt{2}\right)}{4}-49\left(3-2\sqrt{2}\right)+49-147+98\sqrt{2}+49 =\\\\-49\left(3-2\sqrt{2}\right)+98\sqrt{2}+\frac{196\sqrt{2}\pi -343\pi }{4}+49-147+49 =\\\\-147+98\sqrt{2}+98\sqrt{2}+\frac{-343\pi +196\sqrt{2}\pi }{4}+49-147+49

hitung semuanya

\frac{196\sqrt{2}\pi -343\pi }{4}+196\sqrt{2}-196 =\\\\\frac{196\sqrt{2}\pi -343\pi +196\sqrt{2}\cdot \:4-196\cdot \:4}{4} =

¼(196√2π-343π+784√2-784) cm²

jika π = 22/7 maka

¼ · (196√2·(22/7)-(343·(22/7))+784√2-784) =

¼ · (616√2-1078+784√2-784) =

(1400√2-1862)/4 = 14(100√2-133)/4 =

7(100√2-133)/2 cm²

7×(100√2)/2 = 700√2/2 = 350√2 [terbukti] ✅

-7×133/2 = -931/2 = -465½ [terbukti] ✅

_____________

#Jenius - kexcvi

Jawab:Luas yang diarsir [terbukti] =350√2 - 465½ cm² ✅Penjelasan dengan langkah-langkah:Lihat gambar untuk nama-nama garis:Luas (i) / merah =Luas persegi luar - lingkaran luar =(ab)² - (ab)²π/47² - π7²/4 =49 - 49π/4 cm²Luas (ii) / kuning =Cari ehoe = ½ab = ½·7 = 7/2makaeh² = 2(oe)² = 2·(7/2)² = 49/2eh = √49/√2; eh = (7√2)/2 cmmakaij = (ab-eh)/2ij = (7-(7√2)/2)/2, ij = (14-7√2)/4 cmjk = (14-7√2)/4 · √2 = [7(2-√2)]/(2√2) = 14√2-14/4 = 7(√2-1)/2 cmluas (ii) = 2·((lingkaran-kotak) + (tembereng))= 2·((π(ij)² - (jk)²) + (½π(jk)² - (jk)²)= 2·((π((14-7√2)/4)² - (7(√2-1)/2)²) + (½π(7(√2-1)/2)² - (7(√2-1)/2)²))= 2·((π(294-196√2/16) - (49(3-2√2)/4) + (¼π(49(3-2√2)/2) - (49(3-2√2)/4)))= 2·((π(294-196√2/16) - (49(3-2√2)/4) + (¼π(49(3-2√2)/2) - (49(3-2√2)/4))= 2·((49π(3-2√2)/8) - (49(3-2√2)/4) + (49π(3-2√2)/8) - (49(3-2√2)/4))= 2·((49π(3-2√2)/4) - (49(3-2√2)/2))= (49π(3-2√2)/2) - 49(3-2√2)= (49π(3-2√2)/2) -147+98√2 cm²Luas (iii) / hijau =(eh)² - [(½π(eh)² - (eh)²] =((7√2)/2)² - [(½π((7√2)/2)² - ((7√2)/2)²] =49/2 - (49π/4 - 49/2) =49 - 49π/4 cm²Luas (iv) / biru =oL = jk = 7(√2-1)/2 cmmn = 7(√2-1)/2 · √2 = 7(√2-1)/√2 = 7√2(√2-1)/2 =mn = (14-7√2)/2 cmmakaLuas (iv) = π(oL)² - (mn²) = π(7(√2-1)/2)² - ((14-7√2)/2)² =(49π(3-2√2)/4) - (49(3-2√2)/2) cm²Luas (v) / ungu =om = (½mn)√2om = (½(14-7√2)/2)√2om = (14-7√2)/4 · √2 = [7(2-√2)]/(2√2) = 14√2-14/4 = 7(√2-1)/2 cmop = mn - omop = (14-7√2)/2 - 7(√2-1)/2 = 21-14√2/2 cmLuas (v) = ½π(mn)² - (mn)² - π(op)²Luas (v) = ½π((14-7√2)/2)² - ((14-7√2)/2)² - π(21-14√2/2)²Luas (v) = ½π(49(3-2√2)/2) - (49(3-2√2)/2) - π(833-588√2/4)Luas (v) = (49π(3-2√2)/4)-(49(3-2√2)/2)-(833-588√2/4)Luas (v) = 49π(5√2-7)/2 - 49(3-2√2)/2 cm²Luas total = (i) + (ii) + (iii) + (iv) + (v) =[tex]49-49\cdot \frac{\pi }{4}+49\pi \frac{3-2\sqrt{2}}{2}-147+98\sqrt{2}+49-49\cdot \frac{\pi }{4}+49\pi \frac{3-2\sqrt{2}}{4}-49\cdot \frac{3-2\sqrt{2}}{2}+49\pi \frac{5\sqrt{2}-7}{2}-49\cdot \frac{3-2\sqrt{2}}{2} =\\\\49\pi \frac{3-2\sqrt{2}}{2}-49\cdot \frac{3-2\sqrt{2}}{2}-49\cdot \frac{3-2\sqrt{2}}{2}-49\cdot \frac{\pi }{4}-49\cdot \frac{\pi }{4}+49\pi \frac{3-2\sqrt{2}}{4}+49\pi \frac{5\sqrt{2}-7}{2}+49-147+98\sqrt{2}+49 =[/tex][tex]49\pi \frac{3-2\sqrt{2}}{2}-98\cdot \frac{3-2\sqrt{2}}{2}-98\cdot \frac{\pi }{4}+49\pi \frac{3-2\sqrt{2}}{4}+49\pi \frac{5\sqrt{2}-7}{2}+49-147+98\sqrt{2}+49[/tex]maka[tex]\frac{49\pi \left(3-2\sqrt{2}\right)}{2}-49\left(3-2\sqrt{2}\right)-\frac{49\pi }{2}+\frac{49\pi \left(3-2\sqrt{2}\right)}{4}+\frac{49\pi \left(5\sqrt{2}-7\right)}{2}+49-147+98\sqrt{2}+49 =\\\\-\frac{49\pi }{2}+\frac{49\pi \left(3-2\sqrt{2}\right)}{2}+\frac{49\pi \left(3-2\sqrt{2}\right)}{4}+\frac{49\pi \left(5\sqrt{2}-7\right)}{2}-49\left(3-2\sqrt{2}\right)+49-147+98\sqrt{2}+49[/tex]sederhanakan![tex]\frac{49\pi \left(3-2\sqrt{2}\right)+49\pi \left(5\sqrt{2}-7\right)-49\pi }{2}+\frac{49\pi \left(3-2\sqrt{2}\right)}{4}-49\left(3-2\sqrt{2}\right)+49-147+98\sqrt{2}+49 =\\\\\frac{147\sqrt{2}\pi -245\pi }{2}+\frac{49\pi \left(3-2\sqrt{2}\right)}{4}-49\left(3-2\sqrt{2}\right)+49-147+98\sqrt{2}+49 =\\\\-49\left(3-2\sqrt{2}\right)+98\sqrt{2}+\frac{196\sqrt{2}\pi -343\pi }{4}+49-147+49 =\\\\-147+98\sqrt{2}+98\sqrt{2}+\frac{-343\pi +196\sqrt{2}\pi }{4}+49-147+49[/tex]hitung semuanya[tex]\frac{196\sqrt{2}\pi -343\pi }{4}+196\sqrt{2}-196 =\\\\\frac{196\sqrt{2}\pi -343\pi +196\sqrt{2}\cdot \:4-196\cdot \:4}{4} =[/tex]¼(196√2π-343π+784√2-784) cm²jika π = 22/7 maka¼ · (196√2·(22/7)-(343·(22/7))+784√2-784) =¼ · (616√2-1078+784√2-784) =(1400√2-1862)/4 = 14(100√2-133)/4 =7(100√2-133)/2 cm²7×(100√2)/2 = 700√2/2 = 350√2 [terbukti] ✅-7×133/2 = -931/2 = -465½ [terbukti] ✅_____________#Jenius - kexcvi

Semoga dengan pertanyaan yang sudah terjawab oleh unknown dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 08 Jul 21