QuizPermutations• I'am• Off• ByeeNote: Sorry All I Was Off For

Berikut ini adalah pertanyaan dari HasbiKinanUmari pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

QuizPermutations

• I'am
• Off
• Byee

Note: Sorry All I Was Off For 2 Hours, Byee​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Explanation:

Permutations are different arrangements or sequences that are formed from part or all of the objects.

➽ The formula for permutations without double elements is P = n!

➽ The formula for permutations with multiple elements is P = \frac{n!}{k!}

➽ The formula for a cyclical permutation is (n – 1)!

**

A combination is a collection of some or all objects regardless of their order.

➽ The formula for the combination is C(n, r) = n!/(r! (n – r)!

**

Factorial, which is sequential multiplication and starts or starts from the number 1 to the number in question, so the factorial of a natural number is the result of multiplying positive integers and less than or also with n.

Example factorial =

\begin{gathered} \boxed{ \begin{array}{c|c} \underline{\rm Faktorial\:Number} & \underline{ \rm Result}\\ \rm1!&\rm 1 \\ \rm 2! & \rm 2\times1=2\\ \rm 3! & \rm 3\times2\times1=6\\ \rm4! & \rm 4\times3\times2\times1=24\\ \rm 5! & \rm 5\times4\times3\times2\times1=120\\ \rm 6! &\rm 6\times5\times4\times3\times2\times1=720\\ \rm 7! &\rm 7\times6\times5\times4\times3\times2\times1=5.040\\ \rm 8! &\rm 8\times7\times6\times5\times4\times3\times2\times1=40.320\\ \end{array}}\end{gathered}

*note: if the result of the factorial number in the box is not visible, swipe to the side

Jawab:

• I'am = 24 word order

• Off = 3 word order

• Byee = 12 word order

Penjelasan dengan langkah-langkah:

"I'am"

i = 1

' = 1

a = 1

m = 1

  • Number of letters = 4
  • Double element = 0

P = n! = 4! = 4 x 3 x 2 x 1

\boxed{\tt {{\colorbox{pink}{P = 24 word order}}}}

────────────── ೄྀ࿐ ˊˎ-  

"off"

o = 1

f = 2

  • Number of letters = 3
  • Double element = letter f(2)

P = \frac{n!}{k!} = \frac{3!}{2!} = \frac{3 \times 2 \times 1}{2 \times 1} = \frac{6}{2}

\boxed{\tt {{\colorbox{pink}{P = 3 word order}}}}

────────────── ೄྀ࿐ ˊˎ-  

"byee"

b = 1

y = 1

e = 2

  • Number of letters = 4
  • Double element = letter e(2)

P = \frac{n!}{k!} = \frac{4!}{2!} = \frac{4 \times 3 \times 2 \times 1}{2 \times 1} = \frac{24}{2}

\boxed{\tt {{\colorbox{pink}{P = 12 word order}}}}

────────────── ೄྀ࿐ ˊˎ-  

Learn More:

Answer Details:

Subjects: Mathematics

Class: 12 High School

Material: Chapter 7-rules of counting

Categorization Code: 12.2.7

Keywords: Permutations of the word •I'am  •Off  •Byee and Factorial

Explanation:Permutations are different arrangements or sequences that are formed from part or all of the objects.➽ The formula for permutations without double elements is P = n!➽ The formula for permutations with multiple elements is [tex]P = \frac{n!}{k!}[/tex]➽ The formula for a cyclical permutation is (n – 1)!**A combination is a collection of some or all objects regardless of their order.➽ The formula for the combination is C(n, r) = n!/(r! (n – r)!**Factorial, which is sequential multiplication and starts or starts from the number 1 to the number in question, so the factorial of a natural number is the result of multiplying positive integers and less than or also with n.Example factorial =[tex]\begin{gathered} \boxed{ \begin{array}{c|c} \underline{\rm Faktorial\:Number} & \underline{ \rm Result}\\ \rm1!&\rm 1 \\ \rm 2! & \rm 2\times1=2\\ \rm 3! & \rm 3\times2\times1=6\\ \rm4! & \rm 4\times3\times2\times1=24\\ \rm 5! & \rm 5\times4\times3\times2\times1=120\\ \rm 6! &\rm 6\times5\times4\times3\times2\times1=720\\ \rm 7! &\rm 7\times6\times5\times4\times3\times2\times1=5.040\\ \rm 8! &\rm 8\times7\times6\times5\times4\times3\times2\times1=40.320\\ \end{array}}\end{gathered}[/tex]*note: if the result of the factorial number in the box is not visible, swipe to the sideJawab:• I'am = 24 word order• Off = 3 word order• Byee = 12 word orderPenjelasan dengan langkah-langkah:

Semoga dengan pertanyaan yang sudah terjawab oleh ayumiathifa475 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 10 Jan 22