susah ini kalo bisa genius dah! x^3 + y^3 +

Berikut ini adalah pertanyaan dari galuhhan5ome pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Susah ini kalo bisa genius dah!
x^3 + y^3 + z^3 = k​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawaban:

5 poin

Jawab:Given k, a natural number,

determine if there exists x,y,z INTEGERS such that x3+y3+z3=k.

It is not obvious that this problem is

decidable (I think it is but have not been able to find an exact statement to that affect; however, if it was not solvable, I would know that, hence it is solvable. If you know a ref give it in the comments.)

If k= 4,5 mod 9 then mod arguments easily show there is no solution. Huisman showed that if ks 1000, k=1,2,3,6,7,8 mod 9 and max(lxl,ly1.Izl) < 1015 and k is NOT one of

33, 42, 114, 165, 390, 579, 627, 633, 732, 795, 906, 921, 975

then there was a solution. For those on the list it was unknown.

Recently Booker (not Cory Booker, the candidate for prez, but Andrew Booker who I assume is a math-computer science person and is not running for

prez) showed that

x3 + y3 + z3 =33

DOES have a solution in INTEGERS. It is

x=8,866,128,975,287,528

y=-8,778,405,442,862,239

z=-2,736,111,468,807,040

does that make us more likely or less

likely to think that

x3 + y3 + z3 =42

has a solution? How about 114, etc, the others on the list?

Rather than say what I think is true (I have no idea) here is what I HOPE is true: that the resolution of these problems leads to some mathematics of interest.

Penjelasan dengan langkah-langkah:

maaf kalo salah

#jadikanjawabanterbaik

translate sendiri ya:)

Semoga dengan pertanyaan yang sudah terjawab oleh teresitanggang287 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Wed, 07 Jul 21