Berikut ini adalah pertanyaan dari galuhhan5ome pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama
x^3 + y^3 + z^3 = k
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Jawaban:
5 poin
Jawab:Given k, a natural number,
determine if there exists x,y,z INTEGERS such that x3+y3+z3=k.
It is not obvious that this problem is
decidable (I think it is but have not been able to find an exact statement to that affect; however, if it was not solvable, I would know that, hence it is solvable. If you know a ref give it in the comments.)
If k= 4,5 mod 9 then mod arguments easily show there is no solution. Huisman showed that if ks 1000, k=1,2,3,6,7,8 mod 9 and max(lxl,ly1.Izl) < 1015 and k is NOT one of
33, 42, 114, 165, 390, 579, 627, 633, 732, 795, 906, 921, 975
then there was a solution. For those on the list it was unknown.
Recently Booker (not Cory Booker, the candidate for prez, but Andrew Booker who I assume is a math-computer science person and is not running for
prez) showed that
x3 + y3 + z3 =33
DOES have a solution in INTEGERS. It is
x=8,866,128,975,287,528
y=-8,778,405,442,862,239
z=-2,736,111,468,807,040
does that make us more likely or less
likely to think that
x3 + y3 + z3 =42
has a solution? How about 114, etc, the others on the list?
Rather than say what I think is true (I have no idea) here is what I HOPE is true: that the resolution of these problems leads to some mathematics of interest.
Penjelasan dengan langkah-langkah:
maaf kalo salah
#jadikanjawabanterbaik
translate sendiri ya:)
Semoga dengan pertanyaan yang sudah terjawab oleh teresitanggang287 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Wed, 07 Jul 21