Diketahui grafik fungsi f(x) = 2x^2 - 4x +4.Pertanyaan yang

Berikut ini adalah pertanyaan dari rahayuadiguna pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Diketahui grafik fungsi f(x) = 2x^2 - 4x +4.Pertanyaan yang salah dari grafik tersebut adalah...
A. Grafiktersebut membuka keatas
B. Tidak memotobg sumbu x
C. Titik puncak di sebelah kiri sumbu x
D. Memotong sumbu y di titik (0, 4)

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawaban

Pernyataan yang salah pada grafik fungsi f(x) = 2x² -4x +4 adalah C. Titik Puncak di sebelah kiri sumbu x

Tingkat Kesulitan Soal: ★ ★ ★ Rumit

Pembahasan

Selection A: Grafik Membuka ke Atas

Persamaan Kuadrat memiliki bentuk seperti ini.

y = a {x}^{2} + bx + c

Untuk menentukan arah terbukanya grafik persamaan kuadrat, kita hanya perlu melihat nilai a. Apabila a > 0, maka grafik membuka ke atas. Sebaliknya, apabila a < 0, grafik membuka ke bawah.

Pada soal ini, nilai a > 0, maka grafik membuka ke atas. Dengan demikian, pernyataan A benar.

Selection B: Tidak Memotong Sumbu x

Ada 2 cara untuk menentukan suatu garis memotong sumbu x atau tidak, yaitu:

  1. Substitusi y = 0
  2. Diskriminan

Walaupun terdapat dua buah cara, namun cara diskriminan jauh lebih mudah dan cepat. Caranya adalah sebagai berikut.

D = {b}^{2} - 4ac = {( - 4)}^{2} - 4 \times 2 \times 4 \\ = 16 - 32 = - 16

Ditemukan D = -16

  1. Jika D > 0, maka kurva memotong sumbu x di 2 titik.
  2. Jika D = 0, maka kurva menyinggung sumbu x atau memotong pada 1 titik
  3. Jika D < 0, maka kurva tidak memotong sumbu x

Jadi, karena D = -16 < 0, maka kurva tidak memotong sumbu x. Dengan demikian, pernyataan B benar.

Selection C: Titik Puncak di Sebelah Kiri Sumbu x

Untuk menentukan titik puncak, bisa dilakukan dengan rumus berikut.

 x_{p} = - \frac{b}{a}

Untuk mencari koordinat y titik puncak, hanya perlu mensubstitusikan x titik puncak ke persamaan kuadrat. Mari kita coba mencari titik puncak x pada soal ini.

x_{p} = - \frac{ - 4}{2} = - ( - 2) = 2

Dengan demikian, titik puncak persamaan kuadrat terletak pada x = 2, yang mana terletak pada sebelah kanan sumbu x. Jadi, pernyataan C salah.

Pengerjaan selesai di sini. Akan tetapi, karena ini adalah pembahasan, saya akan menjelaskan selection D juga.

Selection D: Memotong Sumbu y di (0,4)

Solusi dari pernyataan ini sangat mudah. Kita hanya perlu mensubstitusikan x = 0 dan y = 4 ke persamaan kuadrat dan mengecek apakah hasilnya benar atau salah.

4 = 2 \times {0}^{2} - 4 \times 0 + 4 \\ 4 = 4

Jadi, pernyataan D benar.

CARA CEPAT: Jika suatu persamaan memotong sumbu y, itu artinya x pasti sama dengan 0. Berarti y = c.

Kesimpulan

A: Benar

B: Benar

C: Salah

D: Benar

Jadi, jawabannya adalah C. Titik puncak terletak pada sebelah kiri sumbu x.

Penutup

Semoga jawaban saya membantu. Apabila ada pertanyaan atau sanggahan atas jawaban saya, tolong sampaikan di kolom komentar.

Terima Kasih

Semoga dengan pertanyaan yang sudah terjawab oleh MichaelHart dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sat, 26 Feb 22