Berikut ini adalah pertanyaan dari Christopher1997 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
help me, they're sucks
![The questions is in the picture.help me, they're sucks](https://id-static.z-dn.net/files/d72/77472dfea36fe25e200112c2c2a61e17.jpg)
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
part (b)
change this form to partial fraction
therefore
suppose
then
since
hence
done
part (c)
in progress...
from part (b), we get indefinite integral
so
use the limit, so that the improper integral becomes a definite integral.
because tha range of is
attached proof
![part (b)[tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx[/tex]change this form to partial fraction[tex]\frac{12x^2+2x+3}{x(1+4x^2)} } =\frac{3+12x^2}{x(1+4x^2)} +\frac{2x}{x(1+4x^2)} =\frac{3}{x} +\frac{2}{1+4x^2}[/tex]therefore[tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx=\int {\left(\frac{3}{x} +\frac{2}{1+4x^2} \right)} \, dx=3\ln|x|+\int {\frac{2}{1+4x^2}} \, dx[/tex]suppose[tex]2x=\tan t \ \Rightarrow \ 2\ dx=\sec^2t\ dt[/tex]then[tex]\int {\frac{2}{1+4x^2}} \, dx=\int {\frac{1}{1+\tan^2t}} \, \sec^2t\,dt=\int {\frac{sec^2t\,dt}{\sec^2t}}=\int {dt}=t+C[/tex]since [tex]\tan t=2x \ \Rightarrow \ t=\arctan(2x)[/tex][tex]\int {\frac{2}{1+4x^2}} \, dx=\arctan(2x)+C[/tex]hence[tex]\int {\frac{2}{1+4x^2}} \, dx=\frac{1}{2} \left(\frac{2x}{1+4x^2} +\arctan(2x) \right)+C[/tex][tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx=3\ln|x|+\int {\frac{2}{1+4x^2}} \, dx=3\ln|x|+ \arctan(2x) +C[/tex]donepart (c)in progress...from part (b), we get indefinite integral[tex]\int {\frac{2}{1+4x^2}} \, dx=\arctan(2x)+C[/tex]so[tex]\int {\frac{1}{1+4x^2}} \, dx=\frac{1}{2} \arctan(2x)+C[/tex][tex]= \lim_{b \to \infty} \left(\frac{1}{2}( \arctan(2b) \right)[/tex]use the limit, so that the improper integral becomes a definite integral.[tex]\int\limits^\infty_0 {\frac{1}{1+4x^2} } \, dx = \lim_{b \to \infty} \left(\int\limits^b_0 {\frac{1}{1+4x^2} } \, dx \right)[/tex] [tex]= \lim_{b \to \infty} \left(\frac{1}{2}( \arctan(2b)-\arctan(2\cdot0)) \right)[/tex] [tex]= \lim_{b \to \infty} \left(\frac{1}{2} \arctan(2b) \right)[/tex] [tex]= \frac{1}{2}\lim_{b \to \infty} \left( \arctan(2b) \right)[/tex] [tex]=\frac{1}{2} \left(\frac{\pi }{2} \right)[/tex] [tex]=\frac{\pi}{4}[/tex]because tha range of [tex]y=\arctan x[/tex] is [tex]R_y=\{y:\frac{-\pi }{2} <y<\frac{\pi}{2} \}[/tex]attached proof](https://id-static.z-dn.net/files/d9d/f0c98dde5c2d1de13b8e994a92c33b7e.png)
![part (b)[tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx[/tex]change this form to partial fraction[tex]\frac{12x^2+2x+3}{x(1+4x^2)} } =\frac{3+12x^2}{x(1+4x^2)} +\frac{2x}{x(1+4x^2)} =\frac{3}{x} +\frac{2}{1+4x^2}[/tex]therefore[tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx=\int {\left(\frac{3}{x} +\frac{2}{1+4x^2} \right)} \, dx=3\ln|x|+\int {\frac{2}{1+4x^2}} \, dx[/tex]suppose[tex]2x=\tan t \ \Rightarrow \ 2\ dx=\sec^2t\ dt[/tex]then[tex]\int {\frac{2}{1+4x^2}} \, dx=\int {\frac{1}{1+\tan^2t}} \, \sec^2t\,dt=\int {\frac{sec^2t\,dt}{\sec^2t}}=\int {dt}=t+C[/tex]since [tex]\tan t=2x \ \Rightarrow \ t=\arctan(2x)[/tex][tex]\int {\frac{2}{1+4x^2}} \, dx=\arctan(2x)+C[/tex]hence[tex]\int {\frac{2}{1+4x^2}} \, dx=\frac{1}{2} \left(\frac{2x}{1+4x^2} +\arctan(2x) \right)+C[/tex][tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx=3\ln|x|+\int {\frac{2}{1+4x^2}} \, dx=3\ln|x|+ \arctan(2x) +C[/tex]donepart (c)in progress...from part (b), we get indefinite integral[tex]\int {\frac{2}{1+4x^2}} \, dx=\arctan(2x)+C[/tex]so[tex]\int {\frac{1}{1+4x^2}} \, dx=\frac{1}{2} \arctan(2x)+C[/tex][tex]= \lim_{b \to \infty} \left(\frac{1}{2}( \arctan(2b) \right)[/tex]use the limit, so that the improper integral becomes a definite integral.[tex]\int\limits^\infty_0 {\frac{1}{1+4x^2} } \, dx = \lim_{b \to \infty} \left(\int\limits^b_0 {\frac{1}{1+4x^2} } \, dx \right)[/tex] [tex]= \lim_{b \to \infty} \left(\frac{1}{2}( \arctan(2b)-\arctan(2\cdot0)) \right)[/tex] [tex]= \lim_{b \to \infty} \left(\frac{1}{2} \arctan(2b) \right)[/tex] [tex]= \frac{1}{2}\lim_{b \to \infty} \left( \arctan(2b) \right)[/tex] [tex]=\frac{1}{2} \left(\frac{\pi }{2} \right)[/tex] [tex]=\frac{\pi}{4}[/tex]because tha range of [tex]y=\arctan x[/tex] is [tex]R_y=\{y:\frac{-\pi }{2} <y<\frac{\pi}{2} \}[/tex]attached proof](https://id-static.z-dn.net/files/d56/a69510a9930596ee4dccee700f6d781a.png)
![part (b)[tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx[/tex]change this form to partial fraction[tex]\frac{12x^2+2x+3}{x(1+4x^2)} } =\frac{3+12x^2}{x(1+4x^2)} +\frac{2x}{x(1+4x^2)} =\frac{3}{x} +\frac{2}{1+4x^2}[/tex]therefore[tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx=\int {\left(\frac{3}{x} +\frac{2}{1+4x^2} \right)} \, dx=3\ln|x|+\int {\frac{2}{1+4x^2}} \, dx[/tex]suppose[tex]2x=\tan t \ \Rightarrow \ 2\ dx=\sec^2t\ dt[/tex]then[tex]\int {\frac{2}{1+4x^2}} \, dx=\int {\frac{1}{1+\tan^2t}} \, \sec^2t\,dt=\int {\frac{sec^2t\,dt}{\sec^2t}}=\int {dt}=t+C[/tex]since [tex]\tan t=2x \ \Rightarrow \ t=\arctan(2x)[/tex][tex]\int {\frac{2}{1+4x^2}} \, dx=\arctan(2x)+C[/tex]hence[tex]\int {\frac{2}{1+4x^2}} \, dx=\frac{1}{2} \left(\frac{2x}{1+4x^2} +\arctan(2x) \right)+C[/tex][tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx=3\ln|x|+\int {\frac{2}{1+4x^2}} \, dx=3\ln|x|+ \arctan(2x) +C[/tex]donepart (c)in progress...from part (b), we get indefinite integral[tex]\int {\frac{2}{1+4x^2}} \, dx=\arctan(2x)+C[/tex]so[tex]\int {\frac{1}{1+4x^2}} \, dx=\frac{1}{2} \arctan(2x)+C[/tex][tex]= \lim_{b \to \infty} \left(\frac{1}{2}( \arctan(2b) \right)[/tex]use the limit, so that the improper integral becomes a definite integral.[tex]\int\limits^\infty_0 {\frac{1}{1+4x^2} } \, dx = \lim_{b \to \infty} \left(\int\limits^b_0 {\frac{1}{1+4x^2} } \, dx \right)[/tex] [tex]= \lim_{b \to \infty} \left(\frac{1}{2}( \arctan(2b)-\arctan(2\cdot0)) \right)[/tex] [tex]= \lim_{b \to \infty} \left(\frac{1}{2} \arctan(2b) \right)[/tex] [tex]= \frac{1}{2}\lim_{b \to \infty} \left( \arctan(2b) \right)[/tex] [tex]=\frac{1}{2} \left(\frac{\pi }{2} \right)[/tex] [tex]=\frac{\pi}{4}[/tex]because tha range of [tex]y=\arctan x[/tex] is [tex]R_y=\{y:\frac{-\pi }{2} <y<\frac{\pi}{2} \}[/tex]attached proof](https://id-static.z-dn.net/files/df7/fdaf9e6475dee748e6018c5dcfa4cacf.png)
Semoga dengan pertanyaan yang sudah terjawab oleh atkoamatarp dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Fri, 01 Apr 22