The questions is in the picture.help me, they're sucks​

Berikut ini adalah pertanyaan dari Christopher1997 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

The questions is in the picture.
help me, they're sucks​
The questions is in the picture.help me, they're sucks​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

part (b)

\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx

change this form to partial fraction

\frac{12x^2+2x+3}{x(1+4x^2)} } =\frac{3+12x^2}{x(1+4x^2)} +\frac{2x}{x(1+4x^2)} =\frac{3}{x} +\frac{2}{1+4x^2}

therefore

\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx=\int {\left(\frac{3}{x} +\frac{2}{1+4x^2} \right)} \, dx=3\ln|x|+\int {\frac{2}{1+4x^2}} \, dx

suppose

2x=\tan t \ \Rightarrow \ 2\ dx=\sec^2t\ dt

then

\int {\frac{2}{1+4x^2}} \, dx=\int {\frac{1}{1+\tan^2t}} \, \sec^2t\,dt=\int {\frac{sec^2t\,dt}{\sec^2t}}=\int {dt}=t+C

since  \tan t=2x \ \Rightarrow \ t=\arctan(2x)

\int {\frac{2}{1+4x^2}} \, dx=\arctan(2x)+C

hence

\int {\frac{2}{1+4x^2}} \, dx=\frac{1}{2} \left(\frac{2x}{1+4x^2} +\arctan(2x) \right)+C

\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx=3\ln|x|+\int {\frac{2}{1+4x^2}} \, dx=3\ln|x|+ \arctan(2x) +C

done

part (c)

in progress...

from part (b), we get indefinite integral

\int {\frac{2}{1+4x^2}} \, dx=\arctan(2x)+C

so

\int {\frac{1}{1+4x^2}} \, dx=\frac{1}{2} \arctan(2x)+C

= \lim_{b \to \infty} \left(\frac{1}{2}( \arctan(2b) \right)

use the limit, so that the improper integral becomes a definite integral.

\int\limits^\infty_0 {\frac{1}{1+4x^2} } \, dx = \lim_{b \to \infty} \left(\int\limits^b_0 {\frac{1}{1+4x^2} } \, dx \right)

                 = \lim_{b \to \infty} \left(\frac{1}{2}( \arctan(2b)-\arctan(2\cdot0)) \right)

                 = \lim_{b \to \infty} \left(\frac{1}{2} \arctan(2b) \right)

                 = \frac{1}{2}\lim_{b \to \infty} \left( \arctan(2b) \right)

                 =\frac{1}{2} \left(\frac{\pi }{2} \right)

                 =\frac{\pi}{4}

because tha range of  y=\arctan x  is  

R_y=\{y:\frac{-\pi }{2}

attached proof

part (b)[tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx[/tex]change this form to partial fraction[tex]\frac{12x^2+2x+3}{x(1+4x^2)} } =\frac{3+12x^2}{x(1+4x^2)} +\frac{2x}{x(1+4x^2)} =\frac{3}{x} +\frac{2}{1+4x^2}[/tex]therefore[tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx=\int {\left(\frac{3}{x} +\frac{2}{1+4x^2} \right)} \, dx=3\ln|x|+\int {\frac{2}{1+4x^2}} \, dx[/tex]suppose[tex]2x=\tan t \ \Rightarrow \ 2\ dx=\sec^2t\ dt[/tex]then[tex]\int {\frac{2}{1+4x^2}} \, dx=\int {\frac{1}{1+\tan^2t}} \, \sec^2t\,dt=\int {\frac{sec^2t\,dt}{\sec^2t}}=\int {dt}=t+C[/tex]since  [tex]\tan t=2x \ \Rightarrow \ t=\arctan(2x)[/tex][tex]\int {\frac{2}{1+4x^2}} \, dx=\arctan(2x)+C[/tex]hence[tex]\int {\frac{2}{1+4x^2}} \, dx=\frac{1}{2} \left(\frac{2x}{1+4x^2} +\arctan(2x) \right)+C[/tex][tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx=3\ln|x|+\int {\frac{2}{1+4x^2}} \, dx=3\ln|x|+ \arctan(2x) +C[/tex]donepart (c)in progress...from part (b), we get indefinite integral[tex]\int {\frac{2}{1+4x^2}} \, dx=\arctan(2x)+C[/tex]so[tex]\int {\frac{1}{1+4x^2}} \, dx=\frac{1}{2} \arctan(2x)+C[/tex][tex]= \lim_{b \to \infty} \left(\frac{1}{2}( \arctan(2b) \right)[/tex]use the limit, so that the improper integral becomes a definite integral.[tex]\int\limits^\infty_0 {\frac{1}{1+4x^2} } \, dx = \lim_{b \to \infty} \left(\int\limits^b_0 {\frac{1}{1+4x^2} } \, dx \right)[/tex]                  [tex]= \lim_{b \to \infty} \left(\frac{1}{2}( \arctan(2b)-\arctan(2\cdot0)) \right)[/tex]                  [tex]= \lim_{b \to \infty} \left(\frac{1}{2} \arctan(2b) \right)[/tex]                  [tex]= \frac{1}{2}\lim_{b \to \infty} \left( \arctan(2b) \right)[/tex]                  [tex]=\frac{1}{2} \left(\frac{\pi }{2} \right)[/tex]                  [tex]=\frac{\pi}{4}[/tex]because tha range of  [tex]y=\arctan x[/tex]  is  [tex]R_y=\{y:\frac{-\pi }{2} <y<\frac{\pi}{2} \}[/tex]attached proofpart (b)[tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx[/tex]change this form to partial fraction[tex]\frac{12x^2+2x+3}{x(1+4x^2)} } =\frac{3+12x^2}{x(1+4x^2)} +\frac{2x}{x(1+4x^2)} =\frac{3}{x} +\frac{2}{1+4x^2}[/tex]therefore[tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx=\int {\left(\frac{3}{x} +\frac{2}{1+4x^2} \right)} \, dx=3\ln|x|+\int {\frac{2}{1+4x^2}} \, dx[/tex]suppose[tex]2x=\tan t \ \Rightarrow \ 2\ dx=\sec^2t\ dt[/tex]then[tex]\int {\frac{2}{1+4x^2}} \, dx=\int {\frac{1}{1+\tan^2t}} \, \sec^2t\,dt=\int {\frac{sec^2t\,dt}{\sec^2t}}=\int {dt}=t+C[/tex]since  [tex]\tan t=2x \ \Rightarrow \ t=\arctan(2x)[/tex][tex]\int {\frac{2}{1+4x^2}} \, dx=\arctan(2x)+C[/tex]hence[tex]\int {\frac{2}{1+4x^2}} \, dx=\frac{1}{2} \left(\frac{2x}{1+4x^2} +\arctan(2x) \right)+C[/tex][tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx=3\ln|x|+\int {\frac{2}{1+4x^2}} \, dx=3\ln|x|+ \arctan(2x) +C[/tex]donepart (c)in progress...from part (b), we get indefinite integral[tex]\int {\frac{2}{1+4x^2}} \, dx=\arctan(2x)+C[/tex]so[tex]\int {\frac{1}{1+4x^2}} \, dx=\frac{1}{2} \arctan(2x)+C[/tex][tex]= \lim_{b \to \infty} \left(\frac{1}{2}( \arctan(2b) \right)[/tex]use the limit, so that the improper integral becomes a definite integral.[tex]\int\limits^\infty_0 {\frac{1}{1+4x^2} } \, dx = \lim_{b \to \infty} \left(\int\limits^b_0 {\frac{1}{1+4x^2} } \, dx \right)[/tex]                  [tex]= \lim_{b \to \infty} \left(\frac{1}{2}( \arctan(2b)-\arctan(2\cdot0)) \right)[/tex]                  [tex]= \lim_{b \to \infty} \left(\frac{1}{2} \arctan(2b) \right)[/tex]                  [tex]= \frac{1}{2}\lim_{b \to \infty} \left( \arctan(2b) \right)[/tex]                  [tex]=\frac{1}{2} \left(\frac{\pi }{2} \right)[/tex]                  [tex]=\frac{\pi}{4}[/tex]because tha range of  [tex]y=\arctan x[/tex]  is  [tex]R_y=\{y:\frac{-\pi }{2} <y<\frac{\pi}{2} \}[/tex]attached proofpart (b)[tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx[/tex]change this form to partial fraction[tex]\frac{12x^2+2x+3}{x(1+4x^2)} } =\frac{3+12x^2}{x(1+4x^2)} +\frac{2x}{x(1+4x^2)} =\frac{3}{x} +\frac{2}{1+4x^2}[/tex]therefore[tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx=\int {\left(\frac{3}{x} +\frac{2}{1+4x^2} \right)} \, dx=3\ln|x|+\int {\frac{2}{1+4x^2}} \, dx[/tex]suppose[tex]2x=\tan t \ \Rightarrow \ 2\ dx=\sec^2t\ dt[/tex]then[tex]\int {\frac{2}{1+4x^2}} \, dx=\int {\frac{1}{1+\tan^2t}} \, \sec^2t\,dt=\int {\frac{sec^2t\,dt}{\sec^2t}}=\int {dt}=t+C[/tex]since  [tex]\tan t=2x \ \Rightarrow \ t=\arctan(2x)[/tex][tex]\int {\frac{2}{1+4x^2}} \, dx=\arctan(2x)+C[/tex]hence[tex]\int {\frac{2}{1+4x^2}} \, dx=\frac{1}{2} \left(\frac{2x}{1+4x^2} +\arctan(2x) \right)+C[/tex][tex]\int {\frac{12x^2+2x+3}{x(1+4x^2)} } \, dx=3\ln|x|+\int {\frac{2}{1+4x^2}} \, dx=3\ln|x|+ \arctan(2x) +C[/tex]donepart (c)in progress...from part (b), we get indefinite integral[tex]\int {\frac{2}{1+4x^2}} \, dx=\arctan(2x)+C[/tex]so[tex]\int {\frac{1}{1+4x^2}} \, dx=\frac{1}{2} \arctan(2x)+C[/tex][tex]= \lim_{b \to \infty} \left(\frac{1}{2}( \arctan(2b) \right)[/tex]use the limit, so that the improper integral becomes a definite integral.[tex]\int\limits^\infty_0 {\frac{1}{1+4x^2} } \, dx = \lim_{b \to \infty} \left(\int\limits^b_0 {\frac{1}{1+4x^2} } \, dx \right)[/tex]                  [tex]= \lim_{b \to \infty} \left(\frac{1}{2}( \arctan(2b)-\arctan(2\cdot0)) \right)[/tex]                  [tex]= \lim_{b \to \infty} \left(\frac{1}{2} \arctan(2b) \right)[/tex]                  [tex]= \frac{1}{2}\lim_{b \to \infty} \left( \arctan(2b) \right)[/tex]                  [tex]=\frac{1}{2} \left(\frac{\pi }{2} \right)[/tex]                  [tex]=\frac{\pi}{4}[/tex]because tha range of  [tex]y=\arctan x[/tex]  is  [tex]R_y=\{y:\frac{-\pi }{2} <y<\frac{\pi}{2} \}[/tex]attached proof

Semoga dengan pertanyaan yang sudah terjawab oleh atkoamatarp dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Fri, 01 Apr 22