The curve y = 2x³ + ax + bx +

Berikut ini adalah pertanyaan dari cchocolatteaa pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

The curve y = 2x³ + ax + bx + 7 has a stationary point at the point (2, -13). a) Find the value of a and the value of b.b) Find the coordinates of the second stationary point on the curve. C)Determine the nature of the two stationary points.
d) Find the coordinates of the point on the curve where the gradient is minimum and state the value of the minimum gradient.
*If possible pls send it together with the working way, thank you so much​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawab:

y = 2x³+ax²+bx+7 ⇒ substitute with (2, -13)

-13 = 2(2)³+a(2)²+b(2)+7 (I assume it's supposed ax², not ax)

-13 = 16+4a+2b+7

4a+2b=-36

b = -18-2a ⇒ [1]

a.

stationary point ⇒ gradient = 0 (y' = 0)

y = 2x³+ax²+bx+7

y' = 6x² + 2ax +b

0 = 6x² + 2ax +b ⇒ x = 2

0 = 6(2)² + 2a(2) +b ⇒ substitute with [1]

0 = 24 + 4a + (-18-2a)

2a = -6

a = -3

b = -18-2a = -18-2(-3) = -12

b.

y' = 6x² + 2ax +b

0 = 6x² + 2(-3)x +(-12)

0 = 6x² - 6x -12

0 = x² - x - 2

(x-2)(x+1) = 0

x₁ = 2

x₂ = -1

y = 2x³-3x²-12x+7

y(-1) = 2(-1)³-3(-1)²-12(-1)+7

       = 14

coordinate (-1, 14)

c. (-1, 14) maximum point

   (2, -13) minimum point

d.

y' = gradient

gradient min = y' min

                     = 6x² - 6x -12 min ⇒ y'' = 0

y'' = 12x - 6

0 = 12x - 6

x = 1/2

y(1/2) = 2(1/2)³-3(1/2)²-12(1/2)+7

         = 1/2

coordinate (\frac{1}{2} , \frac{1}{2})

Jawab:y = 2x³+ax²+bx+7 ⇒ substitute with (2, -13)-13 = 2(2)³+a(2)²+b(2)+7 (I assume it's supposed ax², not ax)-13 = 16+4a+2b+74a+2b=-36b = -18-2a ⇒ [1]a.stationary point ⇒ gradient = 0 (y' = 0)y = 2x³+ax²+bx+7y' = 6x² + 2ax +b0 = 6x² + 2ax +b ⇒ x = 20 = 6(2)² + 2a(2) +b ⇒ substitute with [1]0 = 24 + 4a + (-18-2a)2a = -6a = -3b = -18-2a = -18-2(-3) = -12b.y' = 6x² + 2ax +b0 = 6x² + 2(-3)x +(-12)0 = 6x² - 6x -120 = x² - x - 2(x-2)(x+1) = 0x₁ = 2x₂ = -1y = 2x³-3x²-12x+7y(-1) = 2(-1)³-3(-1)²-12(-1)+7        = 14coordinate (-1, 14)c. (-1, 14) maximum point    (2, -13) minimum pointd. y' = gradientgradient min = y' min                      = 6x² - 6x -12 min ⇒ y'' = 0y'' = 12x - 60 = 12x - 6x = 1/2y(1/2) = 2(1/2)³-3(1/2)²-12(1/2)+7          = 1/2coordinate ([tex]\frac{1}{2}[/tex] , [tex]\frac{1}{2}[/tex])

Semoga dengan pertanyaan yang sudah terjawab oleh chongkeagan dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 09 May 22