tolong bantu jawab jangan ngasal​

Berikut ini adalah pertanyaan dari mridho409 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Tolong bantu jawab jangan ngasal​
tolong bantu jawab jangan ngasal​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

\cos{A}=\frac{2}{3},\,\,\,\,\cos{B}=\frac{3}{5}

Mencari perbandingan trigonometri sisi segitiga siku-siku:
(Ada pada gambar)

Maka,

a)

\cos{A}\,\cos{B}-\sin{A}\,\sin{B}\\\\=\frac{2}{3}\times\frac{3}{5}-\frac{\sqrt5}{3}\times\frac{4}{5}\\\\=\frac{2}{5}-\frac{4\sqrt5}{15}\\\\=\frac{6}{15}-\frac{4\sqrt5}{15}\\\\=\frac{6-4\sqrt5}{15}

b)

\sin{A}\,\cos{B}+\sin{B}\,\cos{A}\\\\=\frac{\sqrt5}{3}\times\frac{3}{5}+\frac{4}{5}\times\frac{2}{3}\\\\=\frac{\sqrt5}{5}+\frac{8}{15}\\\\=\frac{3\sqrt5}{15}+\frac{8}{15}\\\\=\frac{3\sqrt5+8}{15}

c)

\tan^2{A}-\tan^2{B}\\\\={(\frac{\sqrt5}{2})}^2-{(\frac{4}{3})}^2\\\\=\frac{5}{4}-\frac{16}{9}\\\\=\frac{45}{36}-\frac{64}{36}\\\\=\frac{19}{36}

d)

\sin^2{A}+\cos^2{B}\\\\={(\frac{\sqrt5}{3})}^2+{(\frac{3}{5})}^2\\\\=\frac{5}{9}+\frac{9}{25}\\\\=\frac{125}{225}+\frac{81}{225}\\\\=\frac{206}{225}

[tex]\cos{A}=\frac{2}{3},\,\,\,\,\cos{B}=\frac{3}{5}[/tex]Mencari perbandingan trigonometri sisi segitiga siku-siku:(Ada pada gambar)Maka,a)[tex]\cos{A}\,\cos{B}-\sin{A}\,\sin{B}\\\\=\frac{2}{3}\times\frac{3}{5}-\frac{\sqrt5}{3}\times\frac{4}{5}\\\\=\frac{2}{5}-\frac{4\sqrt5}{15}\\\\=\frac{6}{15}-\frac{4\sqrt5}{15}\\\\=\frac{6-4\sqrt5}{15}[/tex]b)[tex]\sin{A}\,\cos{B}+\sin{B}\,\cos{A}\\\\=\frac{\sqrt5}{3}\times\frac{3}{5}+\frac{4}{5}\times\frac{2}{3}\\\\=\frac{\sqrt5}{5}+\frac{8}{15}\\\\=\frac{3\sqrt5}{15}+\frac{8}{15}\\\\=\frac{3\sqrt5+8}{15}[/tex]c)[tex]\tan^2{A}-\tan^2{B}\\\\={(\frac{\sqrt5}{2})}^2-{(\frac{4}{3})}^2\\\\=\frac{5}{4}-\frac{16}{9}\\\\=\frac{45}{36}-\frac{64}{36}\\\\=\frac{19}{36}[/tex]d)[tex]\sin^2{A}+\cos^2{B}\\\\={(\frac{\sqrt5}{3})}^2+{(\frac{3}{5})}^2\\\\=\frac{5}{9}+\frac{9}{25}\\\\=\frac{125}{225}+\frac{81}{225}\\\\=\frac{206}{225}[/tex][tex]\cos{A}=\frac{2}{3},\,\,\,\,\cos{B}=\frac{3}{5}[/tex]Mencari perbandingan trigonometri sisi segitiga siku-siku:(Ada pada gambar)Maka,a)[tex]\cos{A}\,\cos{B}-\sin{A}\,\sin{B}\\\\=\frac{2}{3}\times\frac{3}{5}-\frac{\sqrt5}{3}\times\frac{4}{5}\\\\=\frac{2}{5}-\frac{4\sqrt5}{15}\\\\=\frac{6}{15}-\frac{4\sqrt5}{15}\\\\=\frac{6-4\sqrt5}{15}[/tex]b)[tex]\sin{A}\,\cos{B}+\sin{B}\,\cos{A}\\\\=\frac{\sqrt5}{3}\times\frac{3}{5}+\frac{4}{5}\times\frac{2}{3}\\\\=\frac{\sqrt5}{5}+\frac{8}{15}\\\\=\frac{3\sqrt5}{15}+\frac{8}{15}\\\\=\frac{3\sqrt5+8}{15}[/tex]c)[tex]\tan^2{A}-\tan^2{B}\\\\={(\frac{\sqrt5}{2})}^2-{(\frac{4}{3})}^2\\\\=\frac{5}{4}-\frac{16}{9}\\\\=\frac{45}{36}-\frac{64}{36}\\\\=\frac{19}{36}[/tex]d)[tex]\sin^2{A}+\cos^2{B}\\\\={(\frac{\sqrt5}{3})}^2+{(\frac{3}{5})}^2\\\\=\frac{5}{9}+\frac{9}{25}\\\\=\frac{125}{225}+\frac{81}{225}\\\\=\frac{206}{225}[/tex][tex]\cos{A}=\frac{2}{3},\,\,\,\,\cos{B}=\frac{3}{5}[/tex]Mencari perbandingan trigonometri sisi segitiga siku-siku:(Ada pada gambar)Maka,a)[tex]\cos{A}\,\cos{B}-\sin{A}\,\sin{B}\\\\=\frac{2}{3}\times\frac{3}{5}-\frac{\sqrt5}{3}\times\frac{4}{5}\\\\=\frac{2}{5}-\frac{4\sqrt5}{15}\\\\=\frac{6}{15}-\frac{4\sqrt5}{15}\\\\=\frac{6-4\sqrt5}{15}[/tex]b)[tex]\sin{A}\,\cos{B}+\sin{B}\,\cos{A}\\\\=\frac{\sqrt5}{3}\times\frac{3}{5}+\frac{4}{5}\times\frac{2}{3}\\\\=\frac{\sqrt5}{5}+\frac{8}{15}\\\\=\frac{3\sqrt5}{15}+\frac{8}{15}\\\\=\frac{3\sqrt5+8}{15}[/tex]c)[tex]\tan^2{A}-\tan^2{B}\\\\={(\frac{\sqrt5}{2})}^2-{(\frac{4}{3})}^2\\\\=\frac{5}{4}-\frac{16}{9}\\\\=\frac{45}{36}-\frac{64}{36}\\\\=\frac{19}{36}[/tex]d)[tex]\sin^2{A}+\cos^2{B}\\\\={(\frac{\sqrt5}{3})}^2+{(\frac{3}{5})}^2\\\\=\frac{5}{9}+\frac{9}{25}\\\\=\frac{125}{225}+\frac{81}{225}\\\\=\frac{206}{225}[/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh framadivadaffa24 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 03 May 22