Tolong dijawab ya Soal Integral Mtk?

Berikut ini adalah pertanyaan dari Naufal5362 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Tolong dijawab ya
Soal Integral Mtk?
Tolong dijawab ya
Soal Integral Mtk?

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

  1. \frac{1}{3} (2+x^{2} )^{\frac{3}{2} } +C
  2. (3x^{2} -1)^{\frac{1}{2} } +C
  3. \frac{1}{3} (2x^{2} +1)^{3} +C
  4. -\frac{1}{2(x^{2} +3x^{}-4)^{2} } +C
  5. \int\limits udv = uv -\int\limits vdu = \frac{1}{3} (-x^{2} (4-2x)^{\frac{3}{2} } = -2 (\frac{2}{5}(4-2x)^{\frac{5}{2} } -\frac{1}{14} (4-2x^)^{\frac{7}{2} } ))+C

Penjelasan dengan langkah-langkah:

  1. \int\limits x\sqrt{2+x^{2} dx} \\=\int\limits \sqrt{u} \frac{1}{2} du\\=\int\limits\frac{\sqrt{u} }{2} du=\frac{1}{2} \int\limits\sqrt{udu} \\\\=\frac{1}{2} \int\limits u^\frac{1}{2} du\\\\ =\frac{1}{2} (\frac{2}{3} u^\frac{3}{2} +C)\\\\=\frac{1}{3} u^\frac{3}{2} +C\\\\=\frac{1}{3} (2+x^{2} )^\frac{3}{2} +C
  2. \int\limits \frac{3x}{\sqrt{3x^{2} -1} } dx\\\\= 3\int\limits \frac{1}{\sqrt{3x^{2} -1} } dx\\= 3\int\limits \frac{1}{\sqrt{u} } . \frac{1}{6} du\\= 3\int\limits \frac{1}{6\sqrt{u} } dv = 3 (\frac{1}{6} \int\limits \frac{1}{\sqrt{u} }dv\\ = \frac{3(1)}{6} \int\limits \frac{1}{\sqrt{u} } dv\\=\frac{1}{2} \int\limits u^{-\frac{1}{2} } du = \frac{1}{2} (2u^{\frac{1}{2} } +C) = u^{\frac{1}{2} } +C\\= 3x^{2} -1\\=(3x^{2} -1)^{\frac{1}{2} } +C
  3. 4\int\limits (2x^{2} +1)^2dx\\=4\int\limits u^{2} \frac{1}{4} du\\=4\int\limits \frac{u^{2} }{4} du\\\\= 4\int\limits \frac{1}{4} \int\limits u^{2} du= \frac{4}{4} \int\limits u^{2} du=1\int\limits u^{2} du= \int\limits u^{2} du = \frac{1}{3}u^{3} \\= \frac{1}{3}u^{3}+C\\=2x^{2} +1\\=\frac{1}{3} (2x^{2} +1)^3+C
  4. \int\limits \frac{2x+3}{(x^{2} +3x-4)^3}^} dx\\u=x^{2} +3x-4\\du=(2x+3)dx = \frac{1}{2x+3} du=dx\\= \int\limits \frac{1}{u^{3} } du=\int\limits u^{-3} du=-\frac{1}{2} u^{-2} \\\\=-\frac{1}{2} u^{-2}+C= -\frac{1}{2u^{2} } +C\\\\=x^{2} +3x-4\\=-\frac{1}{2(x^{2} +3x-4)^2} +C
  5. \int\limits x^{2} \sqrt{4-2x}dx \\=\int\limits vdv =uv-\int\limits vdu \\u= x^{2} \\dv=\sqrt{4-2x} \\\\=x^{2}(-\frac{1}{3} (4-2x)^\frac{2}{3} )-\int\limits\\=-\frac{1}{3} (4-2x)^\frac{3}{2} (2x)dx\\=-\frac{x^2(4-2x)^\frac{3}{2} }{3} -\int\limits\\\\=-\frac{2(4-2x)^\frac{3}{2}x }{3} dx\\=-\frac{x^2(4-2x)^\frac{3}{2} }{3} --\\\\=\int\limits\frac{2(4-2x)^\frac{3}{2}x }{3} dx\\\\=-\frac{x^2(4-3x)^\frac{3}{2} }{3} +\frac{2}{3} = \int\limits (4-2x)^\frac{3}{2} xdx\\\\=-\frac{x^2(4-2x)^\frac{3}{2} }{3} +\frac{2}{3} =\int\limits u^{\frac{3}{2} } (-\frac{u}{2}+2 )\frac{1}{-2} du\\=-\frac{x^2(4-2x)^\frac{3}{2} }{3} +\frac{2}{3} =\int\limits (-\frac{u}{2} +2)(-\frac{u^\frac{3}{2} }{2} )du\\\\=-\frac{x^2(4-2x)^\frac{3}{2} }{3} +\frac{2}{3} (-\int\limits (-\frac{u}{2} +2)(\frac{u^\frac{3}{2} }{2} )du)\\\\=-\frac{x^2(4-2x)^\frac{3}{2} }{3} + \frac{2}{3} (-\int\limits \frac{2u^\frac{3}{2} }{2} -\frac{u^\frac{5}{2} }{4} du)\\\\=-\frac{x^2(4-2x)^\frac{3}{2} }{3} +\frac{2}{3}(-(\int\limits u^\frac{3}{2} du+\int\limits -\frac{u^\frac{5}{2} }{4} du))\\=-\frac{x^2(4-2x)^\frac{3}{2} }{3} +\frac{2}{3}(-(\frac{2}{5}u^\frac{5}{2} +C+\int\limits -\frac{u^\frac{5}{2} }{4}du))=(-(\frac{2u^\frac{5}{2} }{5} +C+\int\limits -\frac{u^\frac{5}{2} }{4} du))=(-(\frac{2u^\frac{5}{2} }{5} +C-\int\limits -\frac{u^\frac{5}{2} }{4} du))=(-(\frac{2u^\frac{5}{2} }{5} +C-(\frac{1}{4} \int\limit u^\frac{5}{2} du))==(-(\frac{2u^\frac{5}{2} }{5} +C-\frac{1}{4} (\frac{2}{7} u^\frac{7}{2} +C))\\\\=\frac{-x^2(4-2x)^\frac{3}{2}-2(\frac{2u^\frac{5}{2} }{5}-\frac{u^\frac{7}{2} }{14})}{3} +C\\\\=-x^2(4-2x)^\frac{3}{2} -\frac{2(\frac{2(4-2x)^\frac{5}{2} }{5} -\frac{(4-2x)^\frac{7}{2}}{14}}{3}+C\\\\ =\frac{1}{3} (-x^2(4-2x)^\frac{3}{2} -2(\frac{2}{5}(4-2x)^\frac{5}{2} -\frac{1}{14} (4-2x)^\frac{7}{2}))+C

Pelajari lebih lanjut

Contoh soal matematika integral lainnya dapat dipelajari di yomemimo.com/tugas/2828210

#BelajarBersamaBrainly

Semoga dengan pertanyaan yang sudah terjawab oleh resitaana95 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sun, 01 May 22