Berikut ini adalah pertanyaan dari nesaanjelita365 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Pertidaksamaan merupakan suatu pernyataan matematis, dimana terdapat dua pernyataan yang berbeda. Pernyataan yang berbeda dinyatakan dalam bentuk penulisan kurang dari atau lebih dari (<, >). Serta dapat pula ditulis kurang dari sama dengan atau lebih dari sama dengan (≤, ≥).
Penjelasan dengan langkah-langkah:
Diketahui:
2x + y ≤ 12
x + 2y ≤ 16
3x - 2y ≤ 12
Ditanya:
A. Daerah penyelesaian
B. Titik potong ketiga garis
Jawab:
A. Daerah Penyelesaian
1. Tentukan titik-titik pada setiap garis
- 2x + y ≤ 12 memiliki titik-titik pada (6,0) dan (0,12)
- x + 2y ≤ 16 memiliki titik-titik pada (16,0) dan (0,8)
- 3x - 2y ≤ 12 memiliki titik-titik pada (3,0) dan (0,-45)
2. Perhatikan gambar terlampir!
Dengan melakukan plotting pada titik-titik diatas, maka diperoleh daerah penyelesaian seperti tampak pada gambar.
Daerah pertidaksamaan merupakan daerah yang diarsir (berwarna biru)
B. Titik potong ketiga garis
1. Titik potong garis 2x + y ≤ 12 dan x + 2y ≤ 16
2x + y ≤ 12 ║x1║ 2x + y ≤ 12
x + 2y ≤ 16 ║x2║ 2x + 4y ≤ 32 -
-3y ≤ 20
y ≥
Substitusikan untuk memperoleh nilai x
x + 2y ≤ 16
x + 2 () ≤ 16
x + ≤ 16
x ≤
2. Titik potong garis 2x + y ≤ 12 dan 3x - 2y ≤ 12
2x + y ≤ 12 ║x3║ 6x + 3y ≤ 36
3x - 2y ≤ 12║x2║ 6x - 4y ≤ 24 -
7y ≤ 12
y ≥
Substitusikan untuk memperoleh nilai x
2x + y ≤ 12
2x + () ≤ 12
2x ≤
x ≤
3. Titik potong garis x + 2y ≤ 16 dan 3x - 2y ≤ 12
x + 2y ≤ 16 ║x3║ 3x + 6y ≤ 48
3x - 2y ≤ 12║x1║ 3x - 2y ≤ 12 -
8y ≤ 36
y ≥
Substitusikan untuk memperoleh nilai x
x + 2y ≤ 16
x + 2() ≤ 12
x ≤ 12 - 9
x ≤ 3
Pelajari Lebih Lanjut
Pelajari lebih lanjut pada yomemimo.com/tugas/11236222
#BelajarBersamaBrainly
#SPJ9
Semoga dengan pertanyaan yang sudah terjawab oleh alwintryasnowo dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Sun, 18 Dec 22