Berikut ini adalah pertanyaan dari adikinpusaka pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Untuk membeli 1 donat, 1 risol, dan 1 puding Tamara harus membayar Rp 9.500,00.
Penjelasan dengan langkah-langkah
Soal di atas merupakan soal matematika yang membahas tentang persamaan linier. Persamaan linier merupakan suatu persamaan aljabar yang tiap sukunya terdapat suatu konstanta, atau bisa dibilang suatu perkalian konstanta dengan suatu variabel tunggal. Persamaan tersebut dapat dikatakan linier karena sebab hubungan matematis tersebut dapat digambarkan dalam koordinat Kartesius.
Untuk menyelesaikan soal tersebut kita harus mencari masing-masing nilai variabel.
Persamaan linier dapat dituliskan dengan
- Ax + By = C
Penyelesaian soal :
Diketahui :
- x = donat
- y = risol
- z = puding
- 3x + y + 2z = Rp 20.000,00 (1)
- x + 2y + z = Rp 12.500,00 (2)
- 2x + y + 2z = Rp 16.000,00 (3)
Ditanyakan :
Berapa yang harus dibayarkan jika membeli 1 donat, 1 risol, dan 1 puding (x + y + z)?
Jawab :
Mencari masing-masing variabel :
Persamaan linier
- 3x + y + 2z = Rp 20.000,00 (1)
- x + 2y + z = Rp 12.500,00 (2)
- 2x + y + 2z = Rp 16.000,00 (3)
Untuk mencari nilai salah satu variabel kita harus menghilangkan variabel yang lain dengan menyamakannya kemudian mengurangkannya
3x + y + 2z = Rp 20.000,00 (1)
2x + y + 2z = Rp 16.000,00 (3)
sehingga persamaan linier menjadi
3x + y + 2z = Rp 20.000,00
2x + y + 2z = Rp 16.000,00
______________ -
x = Rp 4.000,00
Substitusikan x = Rp 4.000,00ke persamaanx + 2y + z = Rp 12.500,00 dan persamaan 2x + y + 2z = Rp 16.000,00
Persamaan 2x + y + 2z = Rp 16.000,00
- 2x + y + 2z = Rp 16.000,00
- 2 (Rp 4.000,00) + y + 2z = Rp 16.000,00
- Rp 8.000 + y + 2z = Rp 16.000,00
- y + 2z = Rp 8.000,00
Persamaan x + 2y + z = Rp 12.500,00
- x + 2y + z = Rp 12.500,00
- Rp 4.000,00 + 2y + z = Rp 12.500,00
- 2y + z = Rp 8.500,00
Samakan nilai variabel y
- y + 2z = Rp 8.000,00 dikalikan 2
- 2y + z = Rp 8.500,00
sehingga persamaan menjadi
2y + 4z = Rp 16.000,00
2y + z = Rp 8.500,00
______________ -
3z = Rp 7.500,00
z = Rp 2.500,00
Substitusikan x = Rp 4.000danz = Rp 2.500ke dalam persamaan3x + y + 2z = Rp 20.000,00
- 3x + y + 2z = Rp 20.000,00
- 3(Rp 4.000,00) + y + 2(Rp 2.500,00) = Rp 20.000,00
- Rp 12.000,00 + y + Rp 5.000,00 = Rp 20.000,00
- y = Rp 20.000,00 - Rp 17.000,00
- y = Rp 3.000,00
Dari penghitungan tersebut diketahui bahwa nilai variabel x = Rp 4.000,00 , nilai variabel y = Rp 3.000,00dan nilai variabelz = Rp 2.500,00
Jika Tamara membeli 1 donat, 1 risol, dan 1 puding, maka
- x + y + z =
- Rp 4.000,00 + Rp 3.000,00 + Rp 2.500,00 = Rp 9.500,00
Jadi, Tamara membeli 1 donat, 1 risol, dan 1 puding harus membayar Rp 9.500,00.
Pelajari lebih lanjut :
- Materi contoh soal persamaan linier yomemimo.com/tugas/18708841
- Materi tentang contoh soal persamaan linier 3 variabel yomemimo.com/tugas/6594911
- Materi tentang contoh soal persamaan linier yomemimo.com/tugas/17859779
#BelajarBersamaBrainly
#SPJ1
Semoga dengan pertanyaan yang sudah terjawab oleh Alvintaa dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Thu, 11 Aug 22