Quiz (+50): fungsi, invers, integral, luas daerah ada di gambar soalnya

Berikut ini adalah pertanyaan dari unknown pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Quiz (+50):
fungsi, invers, integral, luas daerah
ada di gambar soalnya
Quiz (+50):
fungsi, invers, integral, luas daerah
ada di gambar soalnya

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawaban:

420 SL

Pembahasan

Menentukan invers

\begin{aligned}{\Bigl.}y=f(x)&=\frac{x^2-36x+324}{6}\\{\Biggl.}&=\frac{(x-18)^2}{6}\\{\Biggl.}x-18&=\pm\sqrt{6y}\\{\Bigl.}x&=18\pm\sqrt{6y}\\\\\therefore\ f^{-1}(x)&=\begin{cases}{\Bigl.}\bf g(x)=18+\sqrt{6x}\\{\Bigl.}\bf h(x)=18-\sqrt{6x}\end{cases}\end{aligned}

Menentukan titik potong

\begin{aligned}f^{-1}(x)&=f(x)\\18\pm\sqrt{6x}&=\frac{x^2-36x+324}{6}\\108\pm6\sqrt{6x}&=x^2-36x+324\\{}\pm6\sqrt{6x}&=x^2-36x+216\\36\cdot6x&=\left(x^2-36x+216\right)^2\\216x&=x^4-72x^3+1728x^2-15552x+46656\\0&=x^4-72x^3+1728x^2-15768x+46656\quad....(i)\end{aligned}

\begin{aligned}(i):\ &\bold{(x-6)}\underbrace{\left(x^3-66x^2+1332x-7776\right)}_{\begin{array}{c}(ii)\end{array}}=0\\\\(ii):\ &x^3-66x^2+1332x-7776=0\\&\bold{(x-24)}\underbrace{\left(x^2-42x+324\right)}_{\begin{array}{c}(iii)\end{array}}=0\\\\(iii):\ &x^2-42x=-324\\&x^2-42x+441=-324+441\\&(x-21)^2=117\\&x-21={}\pm\sqrt{117}={}\pm\sqrt{9\cdot13}\\&x=21\pm3\sqrt{13}=\bf3\left(7\pm\sqrt{13}\right)\end{aligned}

Jadi, absis dari titik-titik potongnya adalah:

6, 3(7–√13), 24, dan 3(7+√13)

Menentukan Luas Daerah

  • Absis titik potong terluar adalah x = 6 dan x = 3(7+√13), untuk g(x) dan f(x).
  • Absis titik potong terdalam adalah x = 3(7–√13) dan x = 24, untuk h(x) dan f(x).

\begin{aligned}\Biggl.L&=\overbrace{\int_6^{3b}{|g(x)|\,dx}}^{\begin{array}{c}L_1\end{array}}\\&\quad-\Bigg(\underbrace{\int_{3a}^{24}{|h(x)|\,dx}}_{\begin{array}{c}L_2\end{array}}+\underbrace{\int_6^{3a}{|f(x)|\,dx}}_{\begin{array}{c}L_3\end{array}}+\underbrace{\int_{24}^{3b}{|f(x)|\,dx}}_{\begin{array}{c}L_4\end{array}}\Bigg)\\&\textsf{dengan $a=7-\sqrt{13}\ $ dan $\ b=7+\sqrt{13}$}\end{aligned}

\begin{aligned}&\implies a+b=\bf14\\&\implies a-b=\bf-2\sqrt{13}\\&\implies b-a=\bf2\sqrt{13}\\&\implies ab=49-13=\bf36\\&\implies a^2+b^2=14^2-2(36)=\bf124\\&\implies a^3+b^3=14^3-3(36)(14)=\bf1232\end{aligned}

\begin{aligned}L_1&=\int_6^{3b}{|g(x)|\,dx}\\&=\int_6^{3b}\left|18+\sqrt{6x}\right|\,dx\\&=\int_6^{3b}18\,dx+\int_6^{3b}\sqrt{6}\sqrt{x}\,dx\\&=18\Big[x\Big]_6^{3b}+\frac{2\sqrt{6}}{3}\left[x^{\frac{3}{2}}\right]_6^{3b}\\&=54b-108+\frac{2\sqrt{6}(3b)^{\frac{3}{2}}}{3}-\frac{2\sqrt{6}\left(6^{\frac{3}{2}}\right)}{3}\\&=-108+54b+2\sqrt{6}\sqrt{3}\cdot b^{\frac{3}{2}}-24\\\Biggl.L_1&=\bf-132+54b+6\sqrt{2}\cdot b^{\frac{3}{2}}\end{aligned}

\begin{aligned}\Biggl.L_2&=\int_{3a}^{24}{|h(x)|\,dx}\\&=\int_{3a}^{24}\left|18-\sqrt{6x}\right|\,dx\\&=\int_{3a}^{24}18\,dx-\int_{3a}^{24}\sqrt{6}\sqrt{x}\,dx\\&=18\Big[x\Big]_{3a}^{24}-\frac{2\sqrt{6}}{3}\left[x^{\frac{3}{2}}\right]_{3a}^{24}\\&=432-54a-\frac{2\sqrt{6}}{3}\left(24^{\frac{3}{2}}\right)+\frac{2\sqrt{6}}{3}(3a)^{\frac{3}{2}}\\&=432-54a-\frac{2(36)(8)}{3}+6\sqrt{2}\cdot a^{\frac{3}{2}}\\\Biggl.L_2&=\bf240-54a+6\sqrt{2}\cdot a^{\frac{3}{2}}\end{aligned}

\begin{aligned}\Biggl.L_3&=\int_6^{3a}{|f(x)|\,dx}\\&=\int_6^{3a}{\left|\frac{x^2-36x+324}{6}\right|\,dx}\\&=\frac{1}{6}\cdot\int_6^{3a}\left(x^2-36x+324\right)dx\\&=\frac{1}{6}\left[\frac{x^3}{3}-18x^2+324x\right ]_6^{3a}\\&=\frac{1}{6}\left(9a^3-72-162a^2+648+972a-1944\right)\\&=\frac{1}{6}\left(-1368+9a^3-162a^2+972a\right)\\\Biggl.L_3&=\bf\frac{3a^3}{2}-27a^2+162a-228\end{aligned}

\begin{aligned}\Biggl.L_4&=\int_{24}^{3b}{|f(x)|\,dx}\\&=\frac{1}{6}\cdot\int_{24}^{3b}\left(x^2-36x+324\right)dx\\&=\frac{1}{6}\left[\frac{x^3}{3}-18x^2+324x\right ]_{24}^{3b}\\&=\frac{1}{6}\left(9b^3-4608-162b^2+10368+972b-7776\right)\\&=\frac{1}{6}\left ( -2016+9b^3-162b^2+972b \right )\\\Biggl. L_4&=\bf\frac{3b^3}{2}-27b^2+162b-336\end{aligned}

LUAS DAERAH:

\begin{aligned}L&=L_1-(L_2+L_3+L_4)\\&=L_1-L_2-(L_3+L_4)\\L&=-132+54b+6\sqrt{2}\cdot b^{\frac{3}{2}}-\left(240-54a+6\sqrt{2}\cdot a^{\frac{3}{2}}\right)\\&\quad-\left(\frac{3a^3}{2}-27a^2+162a-228 + \left( \frac{3b^3}{2}-27b^2+162b-336 \right)\right)\\L&=-372+54(b+a)+6\sqrt{2}\left(b^{\frac{3}{2}}-a^{\frac{3}{2}}\right)\\&\quad-\left( \frac{3\left(a^3+b^3\right)}{2} - 27\left(a^2+b^2\right) + 162(a+b) - 564 \right)\end{aligned}

\begin{aligned}L&=-372+54(14)+6\sqrt{2}\left(b^{\frac{3}{2}}-a^{\frac{3}{2}}\right)\\&\quad-\left( \frac{3(1232)}{2} - 27(124) + 162(14) - 564 \right)\\L&=-372+756+6\sqrt{2}\left(b^{\frac{3}{2}}-a^{\frac{3}{2}}\right)\\&\quad-(1848-3348+2268-564)\end{aligned}

\begin{aligned}L&=384+6\sqrt{2}\left(b^{\frac{3}{2}}-a^{\frac{3}{2}}\right)-204\\&=180+6\sqrt{2}\left(b^{\frac{3}{2}}-a^{\frac{3}{2}}\right)\\&=180+6\sqrt{2}\sqrt{\left(b^{\frac{3}{2}}-a^{\frac{3}{2}}\right)^2}\\&=180+6\sqrt{2}\sqrt{b^3+a^3-2(ab)^{\frac{3}{2}}}\\&=180+6\sqrt{2}\sqrt{1232-2\left(36^{\frac{3}{2}}\right)}\\&=180+6\sqrt{2}\sqrt{1232-2\cdot6^3}\\&=180+6\sqrt{2}\sqrt{1232-432}\\&=180+6\sqrt{2}\sqrt{800}\\&=180+6\sqrt{2}\cdot20\sqrt{2}\\&=180+240\\&=\bf420\ SL\end{aligned}

Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Fri, 03 Jun 22