tolong kaaaa dua soal ini​

Berikut ini adalah pertanyaan dari cansbbe pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Tolong kaaaa dua soal ini​
tolong kaaaa dua soal ini​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

 \mathbb \color{aqua} \underbrace{JAWABAN}

No. 19 :

 \small \boxed{ \bf {f}^{ - 1} (5) = - 5 \frac{6}{7} } \\

No. 20 :

 \small \boxed{ \bf {g}^{ - 1} (3) = 2 \frac{1}{3} }

------------------

No. 19 :

 \underline{ \overline{ \boxed{ \bold{diketahui}}}}

  •  \tt f(x) = \frac{3x - 6}{2x + 7}

 \\ \underline{ \overline{ \boxed{ \bold{ditanya}}}}

  •  \tt {f}^{ - 1} (5)

 \\ \underline{ \overline{ \boxed{ \bold{jawab}}}}

menentukan f-¹(x) :

 \begin{aligned} \tt y &= \tt \frac{3x - 6}{2x + 7} \\ \tt y(2x + 7) &= \tt 3x - 6 \\ \tt 2xy + 7y &= \tt 3x - 6 \\ \tt 2xy - 3x &= \tt - 7y - 6 \\ \tt x(2y - 3) &= \tt - 7y - 6 \\ \tt x &= \tt \frac{ - 7y - 6}{2y - 3} \end{aligned}

 \tt {f}^{ - 1} (x) = \dfrac{ - 7x - 6}{2x - 3} \\

menentukan f-¹(5) :

 \begin{aligned} \tt {f}^{ - 1} (5) &= \tt \frac{ - 7(5) - 6}{2(5) - 3} \\ \tt &= \tt \frac{ - 35 - 6}{10 - 3} \\ &= \tt \frac{ - 41}{7} \\ &= \bf - 5 \frac{6}{7} \end{aligned} \\

No. 20 :

 \underline{ \overline{ \boxed{ \bold{diketahui}}}}

  •  \tt g(x) = \frac{3x}{4x - 7}

 \\ \underline{ \overline{ \boxed{ \bold{ditanya}}}}

  •  \tt {g}^{ - 1} (3)

 \\ \underline{ \overline{ \boxed{ \bold{jawab}}}}

menentukan g-¹(x) :

 \begin{aligned} \tt y &= \tt \frac{3x}{4x - 7} \\ \tt y(4x - 7) &= \tt 3x \\ \tt 4xy - 7y &= \tt 3x \\ \tt 4xy - 3x &= \tt 7y \\ \tt x(4y - 3) &= \tt 7y \\ \tt x &= \tt \frac{7y}{4y - 3} \end{aligned} \\

 \tt {g}^{ - 1} (x) = \frac{7x}{4x - 3} \\

menentukan g-¹(3) :

 \begin{aligned} \tt {g}^{ - 1} (3) &= \tt \frac{7(3)}{4(3) - 3} \\ &= \tt \frac{21}{12 - 3} \\ &= \tt \frac{21}{9} \\ &= \tt 2 \frac{3}{9} \\ &= \bf 2 \frac{1}{3} \end{aligned}

------------------

 \mathbb \color{red} \underbrace{KESIMPULAN}

 Jadi, nilai  \bf {f}^{ - 1} (5) adalah \bf - 5 \frac{6}{7} dan nilai \bf {g}^{ - 1} (3) adalah \bf 2 \frac{1}{3}

 \colorbox{ff0000}{} \colorbox{ff4000}{}\colorbox{ff8000}{}\colorbox{ffc000}{}\colorbox{ffff00}{}\colorbox{c0ff00}{}\colorbox{80ff00}{}\colorbox{40ff00}{}\colorbox{00ff00}{}\colorbox{00ff40}{}\colorbox{00ff80}{}\colorbox{00ffc0}{}\colorbox{00ffff}{}\colorbox{00c0ff}{}\colorbox{0080ff}{}\colorbox{0040ff}{}\colorbox{0000ff}{}\colorbox{4000ff}{}\colorbox{8000ff}{}\colorbox{c000ff}{}\colorbox{ff00ff}{}\colorbox{ff00c0}{}\colorbox{ff00a0}{}\colorbox{ff0080}{}\colorbox{ff0040}{}

[tex] \mathbb \color{aqua} \underbrace{JAWABAN}[/tex]No. 19 :[tex] \small \boxed{ \bf {f}^{ - 1} (5) = - 5 \frac{6}{7} } \\ [/tex]No. 20 : [tex] \small \boxed{ \bf {g}^{ - 1} (3) = 2 \frac{1}{3} } [/tex]------------------No. 19 :[tex] \underline{ \overline{ \boxed{ \bold{diketahui}}}}[/tex][tex] \tt f(x) = \frac{3x - 6}{2x + 7} [/tex][tex] \\ \underline{ \overline{ \boxed{ \bold{ditanya}}}}[/tex][tex] \tt {f}^{ - 1} (5)[/tex][tex] \\ \underline{ \overline{ \boxed{ \bold{jawab}}}}[/tex]⟹ menentukan f-¹(x) : [tex] \begin{aligned} \tt y &= \tt \frac{3x - 6}{2x + 7} \\ \tt y(2x + 7) &= \tt 3x - 6 \\ \tt 2xy + 7y &= \tt 3x - 6 \\ \tt 2xy - 3x &= \tt - 7y - 6 \\ \tt x(2y - 3) &= \tt - 7y - 6 \\ \tt x &= \tt \frac{ - 7y - 6}{2y - 3} \end{aligned}[/tex][tex] \tt {f}^{ - 1} (x) = \dfrac{ - 7x - 6}{2x - 3} \\ [/tex]⟹ menentukan f-¹(5) : [tex] \begin{aligned} \tt {f}^{ - 1} (5) &= \tt \frac{ - 7(5) - 6}{2(5) - 3} \\ \tt &= \tt \frac{ - 35 - 6}{10 - 3} \\ &= \tt \frac{ - 41}{7} \\ &= \bf - 5 \frac{6}{7} \end{aligned} \\ [/tex]No. 20 :[tex] \underline{ \overline{ \boxed{ \bold{diketahui}}}}[/tex][tex] \tt g(x) = \frac{3x}{4x - 7} [/tex][tex] \\ \underline{ \overline{ \boxed{ \bold{ditanya}}}}[/tex][tex] \tt {g}^{ - 1} (3)[/tex][tex] \\ \underline{ \overline{ \boxed{ \bold{jawab}}}}[/tex]⟹ menentukan g-¹(x) : [tex] \begin{aligned} \tt y &= \tt \frac{3x}{4x - 7} \\ \tt y(4x - 7) &= \tt 3x \\ \tt 4xy - 7y &= \tt 3x \\ \tt 4xy - 3x &= \tt 7y \\ \tt x(4y - 3) &= \tt 7y \\ \tt x &= \tt \frac{7y}{4y - 3} \end{aligned} \\ [/tex][tex] \tt {g}^{ - 1} (x) = \frac{7x}{4x - 3} \\ [/tex]⟹ menentukan g-¹(3) : [tex] \begin{aligned} \tt {g}^{ - 1} (3) &= \tt \frac{7(3)}{4(3) - 3} \\ &= \tt \frac{21}{12 - 3} \\ &= \tt \frac{21}{9} \\ &= \tt 2 \frac{3}{9} \\ &= \bf 2 \frac{1}{3} \end{aligned}[/tex]------------------[tex] \mathbb \color{red} \underbrace{KESIMPULAN}[/tex][tex] [/tex]Jadi, nilai [tex] \bf {f}^{ - 1} (5) [/tex] adalah [tex] \bf - 5 \frac{6}{7} [/tex] dan nilai [tex] \bf {g}^{ - 1} (3) [/tex] adalah [tex] \bf 2 \frac{1}{3} [/tex][tex] \colorbox{ff0000}{} \colorbox{ff4000}{}\colorbox{ff8000}{}\colorbox{ffc000}{}\colorbox{ffff00}{}\colorbox{c0ff00}{}\colorbox{80ff00}{}\colorbox{40ff00}{}\colorbox{00ff00}{}\colorbox{00ff40}{}\colorbox{00ff80}{}\colorbox{00ffc0}{}\colorbox{00ffff}{}\colorbox{00c0ff}{}\colorbox{0080ff}{}\colorbox{0040ff}{}\colorbox{0000ff}{}\colorbox{4000ff}{}\colorbox{8000ff}{}\colorbox{c000ff}{}\colorbox{ff00ff}{}\colorbox{ff00c0}{}\colorbox{ff00a0}{}\colorbox{ff0080}{}\colorbox{ff0040}{} [/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh 3A01 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Fri, 16 Sep 22