Berikut ini adalah pertanyaan dari Xeniaaaa pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
~ Eksponen
↓ PENDAHULUAN ↓
Pengertian Eksponen
Eksponen adalah Suatu hasil dari perkalian yg diulang ulang
Bentuk Umum Eksponen
Dimana,
a = basis
b = pangkat
Sifat - Sifat Eksponen
Eksponen Menyederhanakan:
12² × 12²
= 12^(²+²)
= 12^4
= 12 × 12 × 12 × 12
= 144 × 144
=> 20.736
Contoh Eksponen(Berpangkat)
Pangkat 3:
1³ = 1
2³ = 8
3³ = 27
4³ = 64
5³ = 125
Pangkat 4:
1⁴ = 1
2⁴ = 16
3⁴ = 81
4⁴ = 256
5⁴ = 625
Pangkat 5:
1⁵ = 1
2⁵ = 32
3⁵ = 243
4⁵ = 1.024
5⁵ = 3.125
Cara Menghitung Bilangan Berpangkat
Pangkat 1:
Pangkat 2:
Pangkat 3:
Pangkat 4:
Pangkat 5:
781^2 - 23^2
= (781 × 781) - (23 × 23)
= 609.961 - 529
=> 609.432
Pelajari Lebih Lanjut:
Hasil Dari "371³ - 72³"
Hasil Dari 10^37 ÷ 10^33
Pengertian Eksponen
Kelas : 9
Tingkat : SMP
Materi : Eksponen
Matpel : Matematika
Kode soal : 2
Kode kategorisasi : 9.2.1
Kata Kunci : " Hasil Dari 781^2 - 23^2 "
- - - - - - - - - - - - - - - - - - - -
![Hasil dari 781² - 23² adalah [tex]\bold{\underline{\boxed{\sf \bf \tt 609.432}}}[/tex]✧ ☛ Pembahasan ☚ ✧➩ Pengertian bilangan berpangkatBilangan berpangkat adalah suatu bilangan yang bertujuan untuk menyederhanakan dalam suatu penulisan bilangan apabila dikali dengan bilangan yang sama. ➩ Rumus bilangan berpangkat [tex] \boxed{ \rm{ \underbrace{ {a}^{n} = a \times a \times a \times ... \times a}_{sebanyak \: n}}} [/tex]Keterangan :[tex]a = bilangan \: pokok \: atau \: basis[/tex][tex]n = bilangan \: berpangkat[/tex]➩ Jenis-jenis bilangan berpangkatBilangan berpangkat positifBilangan berpangkat negatifBilangan berpangkat nol➩ Macam - macam bilangan berpangkat1. Bilangan berpangkat dua (Kuadrat)Bilangan berpangkat dua adalah suatu bilangan yang mengalikan bilangan utama sebanyak dua kali. Rumus bilangan berpangkat dua yaitu :[tex] \boxed{a^{2} = a \times a}[/tex]• Keterangan :a = bilangan pokok atau absisContoh bilangan berpangkat dua yaitu :1² = 1 × 1 = 12² = 2 × 2 = 43² = 3 × 3 = 94² = 4 × 4 = 165² = 5 × 5 = 256² = 6 × 6 = 367² = 7 × 7 = 498² = 8 × 8 = 649² = 9 × 9 = 8110² = 10 × 10 = 1002. Bilangan berpangkat tiga (Kubik) Bilangan berpangkat tiga adalah suatu bilangan yang mengalikan bilangan utama sebanyak tiga kali. Rumus bilangan berpangkat tiga yaitu :[tex] \boxed{a^{3} = a \times a \times a}[/tex]• Keterangan :a = bilangan pokok atau absisContoh bilangan berpangkat tiga yaitu :1³ = 1 × 1 × 1 = 12³ = 2 × 2 × 2 = 83³ = 3 × 3 × 3 = 274³ = 4 × 4 × 4 = 645³ = 5 × 5 × 5 = 1256³ = 6 × 6 × 6 = 2167³ = 7 × 7 × 7 = 3438³ = 8 × 8 × 8 = 5129³ = 9 × 9 × 9 = 72910³ = 10 × 10 × 10 = 1.000➩ Sifat - sifat bilangan berpangkat[tex] \begin{gathered}\boxed{\boxed{\begin{array}{c}\rm \underline{Sifat - Sifat \: Bilangan \: Berpangkat}\\\rm \\\rm {a}^{m} \times {a}^{n} = {a}^{(m \: + \: n)} \:\\\rm \\\rm {a}^{m} \div {a}^{n} = a {}^{( m \: - \: n)} \\\rm \\\rm ( {a}^{m}) {}^{n} =a {}^{m \times n} \\\rm \\\rm (ab) {}^{n} = {a}^{n} {b}^{n}\\\rm \\\rm ( \frac{a}{b} ) {}^{n} = \frac{ {a}^{n} }{ {b}^{n} }\\\rm \\\rm \frac{1}{ {a}^{n} } = {a}^{ - n} \\\rm \\\rm \sqrt[n]{ {a}^{m} } = a \frac{m}{n} \\\rm \\\rm {a}^{0} = 1 \end{array}}}\end{gathered}[/tex]✧ ☛ Penyelesaian ☚ ✧[tex]\sf \bf \tt 781² - 23²[/tex][tex]\sf \bf \tt (781 × 781) - (23 × 23)[/tex][tex]\sf \bf \tt 609.961 - (23 × 23)[/tex][tex]\sf \bf \tt 609.961 - 529[/tex][tex]\bold{\underline{\boxed{\green{\sf \bf \tt 609.432}}}}[/tex]✧ ☛ Kesimpulan ☚ ✧Jadi, dapat disimpulkan bahwa hasil dari 781² - 23² adalah [tex]\bold{\underline{\boxed{\sf \bf \tt 609.432}}}[/tex]------------------------------------------------------------------------Pelajari lebih banyak lagi tentang bilangan berpangkat yuk!Pengertian bilangan berpangkat : https://brainly.co.id/tugas/6661348Hasil pangkat dari 1² sampai 50 pangkat 2 : https://brainly.co.id/tugas/18558667Perpangkatan dan bentuk akar : https://brainly.co.id/tugas/16341728------------------------------------------------------------------------Detail JawabanKelas : 9 SMPMapel : MatematikaMateri : Bentuk Akar dan PangkatKode Kategorisasi : 9.2.1#BelajarBersamaBrainly](https://id-static.z-dn.net/files/df2/6a2f66bd74f892ad27626f496d130e71.jpg)
![Hasil dari 781² - 23² adalah [tex]\bold{\underline{\boxed{\sf \bf \tt 609.432}}}[/tex]✧ ☛ Pembahasan ☚ ✧➩ Pengertian bilangan berpangkatBilangan berpangkat adalah suatu bilangan yang bertujuan untuk menyederhanakan dalam suatu penulisan bilangan apabila dikali dengan bilangan yang sama. ➩ Rumus bilangan berpangkat [tex] \boxed{ \rm{ \underbrace{ {a}^{n} = a \times a \times a \times ... \times a}_{sebanyak \: n}}} [/tex]Keterangan :[tex]a = bilangan \: pokok \: atau \: basis[/tex][tex]n = bilangan \: berpangkat[/tex]➩ Jenis-jenis bilangan berpangkatBilangan berpangkat positifBilangan berpangkat negatifBilangan berpangkat nol➩ Macam - macam bilangan berpangkat1. Bilangan berpangkat dua (Kuadrat)Bilangan berpangkat dua adalah suatu bilangan yang mengalikan bilangan utama sebanyak dua kali. Rumus bilangan berpangkat dua yaitu :[tex] \boxed{a^{2} = a \times a}[/tex]• Keterangan :a = bilangan pokok atau absisContoh bilangan berpangkat dua yaitu :1² = 1 × 1 = 12² = 2 × 2 = 43² = 3 × 3 = 94² = 4 × 4 = 165² = 5 × 5 = 256² = 6 × 6 = 367² = 7 × 7 = 498² = 8 × 8 = 649² = 9 × 9 = 8110² = 10 × 10 = 1002. Bilangan berpangkat tiga (Kubik) Bilangan berpangkat tiga adalah suatu bilangan yang mengalikan bilangan utama sebanyak tiga kali. Rumus bilangan berpangkat tiga yaitu :[tex] \boxed{a^{3} = a \times a \times a}[/tex]• Keterangan :a = bilangan pokok atau absisContoh bilangan berpangkat tiga yaitu :1³ = 1 × 1 × 1 = 12³ = 2 × 2 × 2 = 83³ = 3 × 3 × 3 = 274³ = 4 × 4 × 4 = 645³ = 5 × 5 × 5 = 1256³ = 6 × 6 × 6 = 2167³ = 7 × 7 × 7 = 3438³ = 8 × 8 × 8 = 5129³ = 9 × 9 × 9 = 72910³ = 10 × 10 × 10 = 1.000➩ Sifat - sifat bilangan berpangkat[tex] \begin{gathered}\boxed{\boxed{\begin{array}{c}\rm \underline{Sifat - Sifat \: Bilangan \: Berpangkat}\\\rm \\\rm {a}^{m} \times {a}^{n} = {a}^{(m \: + \: n)} \:\\\rm \\\rm {a}^{m} \div {a}^{n} = a {}^{( m \: - \: n)} \\\rm \\\rm ( {a}^{m}) {}^{n} =a {}^{m \times n} \\\rm \\\rm (ab) {}^{n} = {a}^{n} {b}^{n}\\\rm \\\rm ( \frac{a}{b} ) {}^{n} = \frac{ {a}^{n} }{ {b}^{n} }\\\rm \\\rm \frac{1}{ {a}^{n} } = {a}^{ - n} \\\rm \\\rm \sqrt[n]{ {a}^{m} } = a \frac{m}{n} \\\rm \\\rm {a}^{0} = 1 \end{array}}}\end{gathered}[/tex]✧ ☛ Penyelesaian ☚ ✧[tex]\sf \bf \tt 781² - 23²[/tex][tex]\sf \bf \tt (781 × 781) - (23 × 23)[/tex][tex]\sf \bf \tt 609.961 - (23 × 23)[/tex][tex]\sf \bf \tt 609.961 - 529[/tex][tex]\bold{\underline{\boxed{\green{\sf \bf \tt 609.432}}}}[/tex]✧ ☛ Kesimpulan ☚ ✧Jadi, dapat disimpulkan bahwa hasil dari 781² - 23² adalah [tex]\bold{\underline{\boxed{\sf \bf \tt 609.432}}}[/tex]------------------------------------------------------------------------Pelajari lebih banyak lagi tentang bilangan berpangkat yuk!Pengertian bilangan berpangkat : https://brainly.co.id/tugas/6661348Hasil pangkat dari 1² sampai 50 pangkat 2 : https://brainly.co.id/tugas/18558667Perpangkatan dan bentuk akar : https://brainly.co.id/tugas/16341728------------------------------------------------------------------------Detail JawabanKelas : 9 SMPMapel : MatematikaMateri : Bentuk Akar dan PangkatKode Kategorisasi : 9.2.1#BelajarBersamaBrainly](https://id-static.z-dn.net/files/dcb/7d8c5c371c53fba452c52dc2b7677131.jpg)
![Hasil dari 781² - 23² adalah [tex]\bold{\underline{\boxed{\sf \bf \tt 609.432}}}[/tex]✧ ☛ Pembahasan ☚ ✧➩ Pengertian bilangan berpangkatBilangan berpangkat adalah suatu bilangan yang bertujuan untuk menyederhanakan dalam suatu penulisan bilangan apabila dikali dengan bilangan yang sama. ➩ Rumus bilangan berpangkat [tex] \boxed{ \rm{ \underbrace{ {a}^{n} = a \times a \times a \times ... \times a}_{sebanyak \: n}}} [/tex]Keterangan :[tex]a = bilangan \: pokok \: atau \: basis[/tex][tex]n = bilangan \: berpangkat[/tex]➩ Jenis-jenis bilangan berpangkatBilangan berpangkat positifBilangan berpangkat negatifBilangan berpangkat nol➩ Macam - macam bilangan berpangkat1. Bilangan berpangkat dua (Kuadrat)Bilangan berpangkat dua adalah suatu bilangan yang mengalikan bilangan utama sebanyak dua kali. Rumus bilangan berpangkat dua yaitu :[tex] \boxed{a^{2} = a \times a}[/tex]• Keterangan :a = bilangan pokok atau absisContoh bilangan berpangkat dua yaitu :1² = 1 × 1 = 12² = 2 × 2 = 43² = 3 × 3 = 94² = 4 × 4 = 165² = 5 × 5 = 256² = 6 × 6 = 367² = 7 × 7 = 498² = 8 × 8 = 649² = 9 × 9 = 8110² = 10 × 10 = 1002. Bilangan berpangkat tiga (Kubik) Bilangan berpangkat tiga adalah suatu bilangan yang mengalikan bilangan utama sebanyak tiga kali. Rumus bilangan berpangkat tiga yaitu :[tex] \boxed{a^{3} = a \times a \times a}[/tex]• Keterangan :a = bilangan pokok atau absisContoh bilangan berpangkat tiga yaitu :1³ = 1 × 1 × 1 = 12³ = 2 × 2 × 2 = 83³ = 3 × 3 × 3 = 274³ = 4 × 4 × 4 = 645³ = 5 × 5 × 5 = 1256³ = 6 × 6 × 6 = 2167³ = 7 × 7 × 7 = 3438³ = 8 × 8 × 8 = 5129³ = 9 × 9 × 9 = 72910³ = 10 × 10 × 10 = 1.000➩ Sifat - sifat bilangan berpangkat[tex] \begin{gathered}\boxed{\boxed{\begin{array}{c}\rm \underline{Sifat - Sifat \: Bilangan \: Berpangkat}\\\rm \\\rm {a}^{m} \times {a}^{n} = {a}^{(m \: + \: n)} \:\\\rm \\\rm {a}^{m} \div {a}^{n} = a {}^{( m \: - \: n)} \\\rm \\\rm ( {a}^{m}) {}^{n} =a {}^{m \times n} \\\rm \\\rm (ab) {}^{n} = {a}^{n} {b}^{n}\\\rm \\\rm ( \frac{a}{b} ) {}^{n} = \frac{ {a}^{n} }{ {b}^{n} }\\\rm \\\rm \frac{1}{ {a}^{n} } = {a}^{ - n} \\\rm \\\rm \sqrt[n]{ {a}^{m} } = a \frac{m}{n} \\\rm \\\rm {a}^{0} = 1 \end{array}}}\end{gathered}[/tex]✧ ☛ Penyelesaian ☚ ✧[tex]\sf \bf \tt 781² - 23²[/tex][tex]\sf \bf \tt (781 × 781) - (23 × 23)[/tex][tex]\sf \bf \tt 609.961 - (23 × 23)[/tex][tex]\sf \bf \tt 609.961 - 529[/tex][tex]\bold{\underline{\boxed{\green{\sf \bf \tt 609.432}}}}[/tex]✧ ☛ Kesimpulan ☚ ✧Jadi, dapat disimpulkan bahwa hasil dari 781² - 23² adalah [tex]\bold{\underline{\boxed{\sf \bf \tt 609.432}}}[/tex]------------------------------------------------------------------------Pelajari lebih banyak lagi tentang bilangan berpangkat yuk!Pengertian bilangan berpangkat : https://brainly.co.id/tugas/6661348Hasil pangkat dari 1² sampai 50 pangkat 2 : https://brainly.co.id/tugas/18558667Perpangkatan dan bentuk akar : https://brainly.co.id/tugas/16341728------------------------------------------------------------------------Detail JawabanKelas : 9 SMPMapel : MatematikaMateri : Bentuk Akar dan PangkatKode Kategorisasi : 9.2.1#BelajarBersamaBrainly](https://id-static.z-dn.net/files/d3a/2513f4c4220a9a34049463f780abad42.jpg)
![Hasil dari 781² - 23² adalah [tex]\bold{\underline{\boxed{\sf \bf \tt 609.432}}}[/tex]✧ ☛ Pembahasan ☚ ✧➩ Pengertian bilangan berpangkatBilangan berpangkat adalah suatu bilangan yang bertujuan untuk menyederhanakan dalam suatu penulisan bilangan apabila dikali dengan bilangan yang sama. ➩ Rumus bilangan berpangkat [tex] \boxed{ \rm{ \underbrace{ {a}^{n} = a \times a \times a \times ... \times a}_{sebanyak \: n}}} [/tex]Keterangan :[tex]a = bilangan \: pokok \: atau \: basis[/tex][tex]n = bilangan \: berpangkat[/tex]➩ Jenis-jenis bilangan berpangkatBilangan berpangkat positifBilangan berpangkat negatifBilangan berpangkat nol➩ Macam - macam bilangan berpangkat1. Bilangan berpangkat dua (Kuadrat)Bilangan berpangkat dua adalah suatu bilangan yang mengalikan bilangan utama sebanyak dua kali. Rumus bilangan berpangkat dua yaitu :[tex] \boxed{a^{2} = a \times a}[/tex]• Keterangan :a = bilangan pokok atau absisContoh bilangan berpangkat dua yaitu :1² = 1 × 1 = 12² = 2 × 2 = 43² = 3 × 3 = 94² = 4 × 4 = 165² = 5 × 5 = 256² = 6 × 6 = 367² = 7 × 7 = 498² = 8 × 8 = 649² = 9 × 9 = 8110² = 10 × 10 = 1002. Bilangan berpangkat tiga (Kubik) Bilangan berpangkat tiga adalah suatu bilangan yang mengalikan bilangan utama sebanyak tiga kali. Rumus bilangan berpangkat tiga yaitu :[tex] \boxed{a^{3} = a \times a \times a}[/tex]• Keterangan :a = bilangan pokok atau absisContoh bilangan berpangkat tiga yaitu :1³ = 1 × 1 × 1 = 12³ = 2 × 2 × 2 = 83³ = 3 × 3 × 3 = 274³ = 4 × 4 × 4 = 645³ = 5 × 5 × 5 = 1256³ = 6 × 6 × 6 = 2167³ = 7 × 7 × 7 = 3438³ = 8 × 8 × 8 = 5129³ = 9 × 9 × 9 = 72910³ = 10 × 10 × 10 = 1.000➩ Sifat - sifat bilangan berpangkat[tex] \begin{gathered}\boxed{\boxed{\begin{array}{c}\rm \underline{Sifat - Sifat \: Bilangan \: Berpangkat}\\\rm \\\rm {a}^{m} \times {a}^{n} = {a}^{(m \: + \: n)} \:\\\rm \\\rm {a}^{m} \div {a}^{n} = a {}^{( m \: - \: n)} \\\rm \\\rm ( {a}^{m}) {}^{n} =a {}^{m \times n} \\\rm \\\rm (ab) {}^{n} = {a}^{n} {b}^{n}\\\rm \\\rm ( \frac{a}{b} ) {}^{n} = \frac{ {a}^{n} }{ {b}^{n} }\\\rm \\\rm \frac{1}{ {a}^{n} } = {a}^{ - n} \\\rm \\\rm \sqrt[n]{ {a}^{m} } = a \frac{m}{n} \\\rm \\\rm {a}^{0} = 1 \end{array}}}\end{gathered}[/tex]✧ ☛ Penyelesaian ☚ ✧[tex]\sf \bf \tt 781² - 23²[/tex][tex]\sf \bf \tt (781 × 781) - (23 × 23)[/tex][tex]\sf \bf \tt 609.961 - (23 × 23)[/tex][tex]\sf \bf \tt 609.961 - 529[/tex][tex]\bold{\underline{\boxed{\green{\sf \bf \tt 609.432}}}}[/tex]✧ ☛ Kesimpulan ☚ ✧Jadi, dapat disimpulkan bahwa hasil dari 781² - 23² adalah [tex]\bold{\underline{\boxed{\sf \bf \tt 609.432}}}[/tex]------------------------------------------------------------------------Pelajari lebih banyak lagi tentang bilangan berpangkat yuk!Pengertian bilangan berpangkat : https://brainly.co.id/tugas/6661348Hasil pangkat dari 1² sampai 50 pangkat 2 : https://brainly.co.id/tugas/18558667Perpangkatan dan bentuk akar : https://brainly.co.id/tugas/16341728------------------------------------------------------------------------Detail JawabanKelas : 9 SMPMapel : MatematikaMateri : Bentuk Akar dan PangkatKode Kategorisasi : 9.2.1#BelajarBersamaBrainly](https://id-static.z-dn.net/files/d08/92d0bf9a7efcf800a48ba4ba1096a529.jpg)
![Hasil dari 781² - 23² adalah [tex]\bold{\underline{\boxed{\sf \bf \tt 609.432}}}[/tex]✧ ☛ Pembahasan ☚ ✧➩ Pengertian bilangan berpangkatBilangan berpangkat adalah suatu bilangan yang bertujuan untuk menyederhanakan dalam suatu penulisan bilangan apabila dikali dengan bilangan yang sama. ➩ Rumus bilangan berpangkat [tex] \boxed{ \rm{ \underbrace{ {a}^{n} = a \times a \times a \times ... \times a}_{sebanyak \: n}}} [/tex]Keterangan :[tex]a = bilangan \: pokok \: atau \: basis[/tex][tex]n = bilangan \: berpangkat[/tex]➩ Jenis-jenis bilangan berpangkatBilangan berpangkat positifBilangan berpangkat negatifBilangan berpangkat nol➩ Macam - macam bilangan berpangkat1. Bilangan berpangkat dua (Kuadrat)Bilangan berpangkat dua adalah suatu bilangan yang mengalikan bilangan utama sebanyak dua kali. Rumus bilangan berpangkat dua yaitu :[tex] \boxed{a^{2} = a \times a}[/tex]• Keterangan :a = bilangan pokok atau absisContoh bilangan berpangkat dua yaitu :1² = 1 × 1 = 12² = 2 × 2 = 43² = 3 × 3 = 94² = 4 × 4 = 165² = 5 × 5 = 256² = 6 × 6 = 367² = 7 × 7 = 498² = 8 × 8 = 649² = 9 × 9 = 8110² = 10 × 10 = 1002. Bilangan berpangkat tiga (Kubik) Bilangan berpangkat tiga adalah suatu bilangan yang mengalikan bilangan utama sebanyak tiga kali. Rumus bilangan berpangkat tiga yaitu :[tex] \boxed{a^{3} = a \times a \times a}[/tex]• Keterangan :a = bilangan pokok atau absisContoh bilangan berpangkat tiga yaitu :1³ = 1 × 1 × 1 = 12³ = 2 × 2 × 2 = 83³ = 3 × 3 × 3 = 274³ = 4 × 4 × 4 = 645³ = 5 × 5 × 5 = 1256³ = 6 × 6 × 6 = 2167³ = 7 × 7 × 7 = 3438³ = 8 × 8 × 8 = 5129³ = 9 × 9 × 9 = 72910³ = 10 × 10 × 10 = 1.000➩ Sifat - sifat bilangan berpangkat[tex] \begin{gathered}\boxed{\boxed{\begin{array}{c}\rm \underline{Sifat - Sifat \: Bilangan \: Berpangkat}\\\rm \\\rm {a}^{m} \times {a}^{n} = {a}^{(m \: + \: n)} \:\\\rm \\\rm {a}^{m} \div {a}^{n} = a {}^{( m \: - \: n)} \\\rm \\\rm ( {a}^{m}) {}^{n} =a {}^{m \times n} \\\rm \\\rm (ab) {}^{n} = {a}^{n} {b}^{n}\\\rm \\\rm ( \frac{a}{b} ) {}^{n} = \frac{ {a}^{n} }{ {b}^{n} }\\\rm \\\rm \frac{1}{ {a}^{n} } = {a}^{ - n} \\\rm \\\rm \sqrt[n]{ {a}^{m} } = a \frac{m}{n} \\\rm \\\rm {a}^{0} = 1 \end{array}}}\end{gathered}[/tex]✧ ☛ Penyelesaian ☚ ✧[tex]\sf \bf \tt 781² - 23²[/tex][tex]\sf \bf \tt (781 × 781) - (23 × 23)[/tex][tex]\sf \bf \tt 609.961 - (23 × 23)[/tex][tex]\sf \bf \tt 609.961 - 529[/tex][tex]\bold{\underline{\boxed{\green{\sf \bf \tt 609.432}}}}[/tex]✧ ☛ Kesimpulan ☚ ✧Jadi, dapat disimpulkan bahwa hasil dari 781² - 23² adalah [tex]\bold{\underline{\boxed{\sf \bf \tt 609.432}}}[/tex]------------------------------------------------------------------------Pelajari lebih banyak lagi tentang bilangan berpangkat yuk!Pengertian bilangan berpangkat : https://brainly.co.id/tugas/6661348Hasil pangkat dari 1² sampai 50 pangkat 2 : https://brainly.co.id/tugas/18558667Perpangkatan dan bentuk akar : https://brainly.co.id/tugas/16341728------------------------------------------------------------------------Detail JawabanKelas : 9 SMPMapel : MatematikaMateri : Bentuk Akar dan PangkatKode Kategorisasi : 9.2.1#BelajarBersamaBrainly](https://id-static.z-dn.net/files/da4/497a6c6b584084fc6122ee1193ab22b4.jpg)
Semoga dengan pertanyaan yang sudah terjawab oleh ArtX1 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Tue, 27 Sep 22