The equation mx^2+nx+2n=8x+4 has the roots n and 1/m, m≠0.

Berikut ini adalah pertanyaan dari Deanurul9368 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

The equation mx^2+nx+2n=8x+4 has the roots n and 1/m, m≠0. (a) Find the value of m and of n. (b) Hence, using the value of m and of n in (a),find the quadratic equation that has the roots 2m and - 1/n. ​.

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Penjelasan dengan langkah-langkah:

It's known that:

f(x) → mx² + nx + 2n = 8x + 4

f(x) → mx² + nx - 8x + 2n - 4 = 0

f(x) → mx² + x(n-8) + (2n - 4), has roots:

x1 = n x2 = 1/m

it's also known that there is a formula for a quadratic equation f(x) → ax² + bx + c = 0 which has roots x1 and x2, so it can be applies:

x1 + x2 = -b/a

x1 × x2 = c/a

in the question:

a = m b = (n-8) c = (2n-4)

a. x1 + x2 = -b/a

n + 1/m = -((n-8)/m)

(nm+1)/m = -((n-8)/m)

nm+1 = -n+8

nm+n = 7 ..................... (1) 4m + 4 = 7 → m = ¾

x1 × x2 = c/a

n×1/m = (2n-4)/m

n = 2n-4

4 = n

b. x1 = 2m = 2.¾ = 3/2

x2 = -1/4

x1 + x2 = -b/a x1 × x2 = c/a

3/2 - ¼ = -b/a 3/2 × (-¼) = c/a

5/4 = -b/a -⅜ = c/a

10/8 = -b/a

b= -10

a = 8

c = -3

g(x) = 8x² - 10x - 3

Semoga dengan pertanyaan yang sudah terjawab oleh nara999yan dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Wed, 22 Jun 22